5 resultados para Saletnich, Gastone: Synder og pavemakt

em AMS Tesi di Dottorato - Alm@DL - Università di Bologna


Relevância:

10.00% 10.00%

Publicador:

Resumo:

During the last few years, a great deal of interest has risen concerning the applications of stochastic methods to several biochemical and biological phenomena. Phenomena like gene expression, cellular memory, bet-hedging strategy in bacterial growth and many others, cannot be described by continuous stochastic models due to their intrinsic discreteness and randomness. In this thesis I have used the Chemical Master Equation (CME) technique to modelize some feedback cycles and analyzing their properties, including experimental data. In the first part of this work, the effect of stochastic stability is discussed on a toy model of the genetic switch that triggers the cellular division, which malfunctioning is known to be one of the hallmarks of cancer. The second system I have worked on is the so-called futile cycle, a closed cycle of two enzymatic reactions that adds and removes a chemical compound, called phosphate group, to a specific substrate. I have thus investigated how adding noise to the enzyme (that is usually in the order of few hundred molecules) modifies the probability of observing a specific number of phosphorylated substrate molecules, and confirmed theoretical predictions with numerical simulations. In the third part the results of the study of a chain of multiple phosphorylation-dephosphorylation cycles will be presented. We will discuss an approximation method for the exact solution in the bidimensional case and the relationship that this method has with the thermodynamic properties of the system, which is an open system far from equilibrium.In the last section the agreement between the theoretical prediction of the total protein quantity in a mouse cells population and the observed quantity will be shown, measured via fluorescence microscopy.

Relevância:

10.00% 10.00%

Publicador:

Resumo:

It is well known that many realistic mathematical models of biological systems, such as cell growth, cellular development and differentiation, gene expression, gene regulatory networks, enzyme cascades, synaptic plasticity, aging and population growth need to include stochasticity. These systems are not isolated, but rather subject to intrinsic and extrinsic fluctuations, which leads to a quasi equilibrium state (homeostasis). The natural framework is provided by Markov processes and the Master equation (ME) describes the temporal evolution of the probability of each state, specified by the number of units of each species. The ME is a relevant tool for modeling realistic biological systems and allow also to explore the behavior of open systems. These systems may exhibit not only the classical thermodynamic equilibrium states but also the nonequilibrium steady states (NESS). This thesis deals with biological problems that can be treat with the Master equation and also with its thermodynamic consequences. It is organized into six chapters with four new scientific works, which are grouped in two parts: (1) Biological applications of the Master equation: deals with the stochastic properties of a toggle switch, involving a protein compound and a miRNA cluster, known to control the eukaryotic cell cycle and possibly involved in oncogenesis and with the propose of a one parameter family of master equations for the evolution of a population having the logistic equation as mean field limit. (2) Nonequilibrium thermodynamics in terms of the Master equation: where we study the dynamical role of chemical fluxes that characterize the NESS of a chemical network and we propose a one parameter parametrization of BCM learning, that was originally proposed to describe plasticity processes, to study the differences between systems in DB and NESS.

Relevância:

10.00% 10.00%

Publicador:

Resumo:

This thesis deals with the analytic study of dynamics of Multi--Rotor Unmanned Aerial Vehicles. It is conceived to give a set of mathematical instruments apt to the theoretical study and design of these flying machines. The entire work is organized in analogy with classical academic texts about airplane flight dynamics. First, the non--linear equations of motion are defined and all the external actions are modeled, with particular attention to rotors aerodynamics. All the equations are provided in a form, and with personal expedients, to be directly exploitable in a simulation environment. This has requited an answer to questions like the trim of such mathematical systems. All the treatment is developed aiming at the description of different multi--rotor configurations. Then, the linearized equations of motion are derived. The computation of the stability and control derivatives of the linear model is carried out. The study of static and dynamic stability characteristics is, thus, addressed, showing the influence of the various geometric and aerodynamic parameters of the machine and in particular of the rotors. All the theoretic results are finally utilized in two interesting cases. One concerns the design of control systems for attitude stabilization. The linear model permits the tuning of linear controllers gains and the non--linear model allows the numerical testing. The other case is the study of the performances of an innovative configuration of quad--rotor aircraft. With the non--linear model the feasibility of maneuvers impossible for a traditional quad--rotor is assessed. The linear model is applied to the controllability analysis of such an aircraft in case of actuator block.

Relevância:

10.00% 10.00%

Publicador:

Resumo:

In medicine, innovation depends on a better knowledge of the human body mechanism, which represents a complex system of multi-scale constituents. Unraveling the complexity underneath diseases proves to be challenging. A deep understanding of the inner workings comes with dealing with many heterogeneous information. Exploring the molecular status and the organization of genes, proteins, metabolites provides insights on what is driving a disease, from aggressiveness to curability. Molecular constituents, however, are only the building blocks of the human body and cannot currently tell the whole story of diseases. This is why nowadays attention is growing towards the contemporary exploitation of multi-scale information. Holistic methods are then drawing interest to address the problem of integrating heterogeneous data. The heterogeneity may derive from the diversity across data types and from the diversity within diseases. Here, four studies conducted data integration using customly designed workflows that implement novel methods and views to tackle the heterogeneous characterization of diseases. The first study devoted to determine shared gene regulatory signatures for onco-hematology and it showed partial co-regulation across blood-related diseases. The second study focused on Acute Myeloid Leukemia and refined the unsupervised integration of genomic alterations, which turned out to better resemble clinical practice. In the third study, network integration for artherosclerosis demonstrated, as a proof of concept, the impact of network intelligibility when it comes to model heterogeneous data, which showed to accelerate the identification of new potential pharmaceutical targets. Lastly, the fourth study introduced a new method to integrate multiple data types in a unique latent heterogeneous-representation that facilitated the selection of important data types to predict the tumour stage of invasive ductal carcinoma. The results of these four studies laid the groundwork to ease the detection of new biomarkers ultimately beneficial to medical practice and to the ever-growing field of Personalized Medicine.

Relevância:

10.00% 10.00%

Publicador:

Resumo:

Alpha-particle emitters, notably used in 224Ra-DaRT, have emerged as effective in overcoming radiation resistance and providing targeted cancer therapy. These emitters cause DNA double-strand breaks, visualizable in human lymphocytes. The 224Ra DaRT technique, using a decay chain from seeds, extends alpha particle range, achieving complete tumor destruction while sparing healthy tissue. This thesis examines a biokinetic model, validated with patient data, and a feasibility study on skin squamous cell carcinomas are discussed. The study reports 75% tumor complete response rate and 48% patients experiencing acute grade 2 toxicity, resolving within a month. An observed abscopal effect (AE), where tumor regression occurs at non-irradiated sites, is examined, highlighting DaRT's potential in triggering anti-tumor immune responses. This effect, coupled with DaRT's high-linear energy transfer (LET), suggests its superiority over low-LET radiation in certain clinical scenarios. Improvements to DaRT, including the use of an external radio-opaque template for treatment planning, are explored. This advancement aids in determining source numbers for optimal tumor coverage, enhancing DaRT’s safety. The thesis outlines a typical DaRT procedure, from tumor measurements to source assessment and administration, emphasizing the importance of precise seed positioning. Furthermore, the thesis discusses DaRT's potential in treating prostate cancer, a prevalent global health issue, by offering an alternative to traditional salvage therapies. DaRT seeds, delivering alpha particle-based interstitial radiation, require precision in seed insertion due to their limited tissue range. In conclusion, the thesis advocates for DaRT's role in treating solid tumors, emphasizing its improved radiobiological potency and potential benefits over beta and gamma source-based therapies. Ongoing studies are assessing DaRT's feasibility in treating various solid tumors, including pancreatic, breast, prostate, and vulvar malignancies, suggesting a promising future in cancer treatment.