3 resultados para SURFACE CONTAMINATION
em AMS Tesi di Dottorato - Alm@DL - Università di Bologna
Resumo:
In order to improve the animal welfare, the Council Directive 1999/74/EC (defining minimum standards for the welfare of laying hens) will ban conventional cage systems since 2012, in favour of enriched cages or floor systems. As a consequence an increased risk of bacterial contamination of eggshell is expected (EFSA, 2005). Furthermore egg-associated salmonellosis is an important public health problem throughout the world (Roberts et al., 1994). In this regard the introduction of efficient measures to reduce eggshell contamination by S. Enteritidis or other bacterial pathogens, and thus to prevent any potential or additional food safety risk for Human health, may be envisaged. The hot air pasteurization can be a viable alternative for the decontamination of the surface of the egg shell. Few studies have been performed on the decontamination power of this technique on table eggs (Hou et al, 1996; James et al., 2002). The aim of this study was to develop innovative techniques to remove surface contamination of shell eggs by hot air under natural or forced convection. Initially two simplified finite element models describing the thermal interaction between the air and egg were developed, respectively for the natural and forced convection. The numerical models were validated using an egg simulant equipped by type-K thermocouple (Chromel/Alumel). Once validated, the models allowed the selection of a thermal cycle with an inner temperature always lower than 55°C. Subsequently a specific apparatus composed by two hot air generators, one cold air generator and rolling cylinder support, was built to physically condition the eggs. The decontamination power of the thermal treatments was evaluated on shell eggs experimentally inoculated with either Salmonella Enteritidis, Escherichia coli, Listeria monocytogenes and on shell eggs containing only the indigenous microflora. The applicability of treatments was further evaluated by comparing quality traits of treated and not treated eggs immediately after the treatment and after 28 days of storage at 20°C. The results showed that the treatment characterized by two shots of hot air at 350°C for 8 sec, spaced by a cooling interval of 32 (forced convection), reduce the bacterial population of more than 90% (Salmonella enteritidis and Listeria monocytogenes). No statistically significant results were obtained comparing E. coli treated and not treated eggs as well as indigenous microflora treated and not treated eggs. A reduction of 2.6 log was observed on Salmonella enteritidis load of eggs immediately after the treatment in oven at 200°C for 200 minutes (natural convection). Furthermore no detrimental effects on quality traits of treated eggs were recorded. These results support the hot air techniques for the surface decontamination of table eggs as an effective industrial process.
Resumo:
Supramolecular architectures can be built-up from a single molecular component (building block) to obtain a complex of organic or inorganic interactions creating a new emergent condensed phase of matter, such as gels, liquid crystals and solid crystal. Further the generation of multicomponent supramolecular hybrid architecture, a mix of organic and inorganic components, increases the complexity of the condensed aggregate with functional properties useful for important areas of research, like material science, medicine and nanotechnology. One may design a molecule storing a recognition pattern and programming a informed self-organization process enables to grow-up into a hierarchical architecture. From a molecular level to a supramolecular level, in a bottom-up fashion, it is possible to create a new emergent structure-function, where the system, as a whole, is open to its own environment to exchange energy, matter and information. “The emergent property of the whole assembly is superior to the sum of a singles parts”. In this thesis I present new architectures and functional materials built through the selfassembly of guanosine, in the absence or in the presence of a cation, in solution and on the surface. By appropriate manipulation of intermolecular non-covalent interactions the spatial (structural) and temporal (dynamic) features of these supramolecular architectures are controlled. Guanosine G7 (5',3'-di-decanoil-deoxi-guanosine) is able to interconvert reversibly between a supramolecular polymer and a discrete octameric species by dynamic cation binding and release. Guanosine G16 (2',3'-O-Isopropylidene-5'-O-decylguanosine) shows selectivity binding from a mix of different cation's nature. Remarkably, reversibility, selectivity, adaptability and serendipity are mutual features to appreciate the creativity of a molecular self-organization complex system into a multilevelscale hierarchical growth. The creativity - in general sense, the creation of a new thing, a new thinking, a new functionality or a new structure - emerges from a contamination process of different disciplines such as biology, chemistry, physics, architecture, design, philosophy and science of complexity.
Resumo:
This PhD thesis focused on nanomaterial (NM) engineering for occupational health and safety, in the frame of the EU project “Safe Nano Worker Exposure Scenarios (SANOWORK)”. Following a safety by design approach, surface engineering (surface coating, purification process, colloidal force control, wet milling, film coating deposition and granulation) were proposed as risk remediation strategies (RRS) to decrease toxicity and emission potential of NMs within real processing lines. In the first case investigated, the PlasmaChem ZrO2 manufacturing, the colloidal force control applied to the washing of synthesis rector, allowed to reduce ZrO2 contamination in wastewater, performing an efficient recycling procedure of ZrO2 recovered. Furthermore, ZrO2 NM was investigated in the ceramic process owned by CNR-ISTEC and GEA-Niro; the spray drying and freeze drying techniques were employed decreasing NM emissivity, but maintaining a reactive surface in dried NM. Considering the handling operation of nanofibers (NFs) obtained through Elmarco electrospinning procedure, the film coating deposition was applied on polyamide non-woven to avoid free fiber release. For TiO2 NF the wet milling was applied to reduce and homogenize the aspect ratio, leading to a significant mitigation of fiber toxicity. In the Colorobbia spray coating line, Ag and TiO2 nanosols, employed to transfer respectively antibacterial or depolluting properties to different substrates, were investigated. Ag was subjected to surface coating and purification, decreasing NM toxicity. TiO2 was modified by surface coating, spray drying and blending with colloidal SiO2, improving its technological performance. In the extrusion of polymeric matrix charged with carbon nanotube (CNTs) owned by Leitat, the CNTs used as filler were granulated by spray drying and freeze spray drying techniques, allowing to reduce their exposure potential. Engineered NMs tested by biologists were further investigated in relevant biological conditions, to improve the knowledge of structure/toxicity mechanisms and obtain new insights for the design of safest NMs.