13 resultados para STREPTOCOCCUS-PNEUMONIAE

em AMS Tesi di Dottorato - Alm@DL - Università di Bologna


Relevância:

100.00% 100.00%

Publicador:

Resumo:

Analysis of publicly available genomes of Streptococcus pneumoniae has led to the identification of a new genomic element resembling gram-positive pilus islets (PIs). Here, we demonstrate that this genomic region, herein referred to as PI-2 (containing the genes pitA, sipA, pitB, srtG1, and srtG2) codes for a novel functional pilus in pneumococcus. Therefore, there are two pilus islets identified so far in this pathogen (PI-1 and PI-2). Polymerization of the PI-2 pilus requires the backbone protein PitB as well as the sortase SrtG1 and the signal peptidase-like protein SipA. PI-2 is associated with serotypes 1, 2, 7F, 19A, and 19F, considered to be emerging in both industrialized and developing countries. Interestingly, strains belonging to clonal complex 271 (CC271) contain both PI-1 and PI-2, as revealed by genome analyses. In these strains both pili are surface exposed and independently assembled. Furthermore, in vitro experiments provide evidence that the pilus encoded by PI-2 of S. pneumoniae is involved in adherence. Thus, pneumococci encode at least two types of pili that may play a role in the initial host cell contact to the respiratory tract. In addition, the pilus proteins are potential antigens for inclusion in a new generation of pneumococcal vaccines. Adherence by pili could represent important factor in bacterial community formation, since it has been demonstrated that bacterial community formation plays an important role in pneumococcal otitis media. In vitro quantification of bacterial community formation by S. pneumoniae was performed in order to investigate the possible role of pneumococcal pili to form communities. By using different growth media we were not able to see clear association between pili and community formation. But our findings revealed that strains belonging to MLST clonal complex CC15 efficiently form bacterial communities in vitro in a glucose dependent manner. We compared the genome of forty-four pneumococcal isolates discovering four open reading frames specifically associated with CC15. These four genes are annotated as members of an operon responsible for the biosynthesis of a putative lanctibiotic peptide, described to be involved in bacterial community formation. Our experiments show that the lanctibiotic operon deletion affects glucose mediated community formation in CC 15 strain INV200. Moreover, since glucose consumption during bacterial growth produce an acidic environment, we tested bacterial community formation at different pH and we showed that the lanctibiotic operon deletion affected pH mediated community formation in CC 15 strain INV200. In conclusion, these data demonstrate that the putative lanctibiotic operon is associated with pneumococcal CC 15 strains in vitro bacterial community formation.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

Streptococcus pneumoniae is an important life threatening human pathogen causing agent of invasive diseases such as otitis media, pneumonia, sepsis and meningitis, but is also a common inhabitant of the respiratory tract of children and healthy adults. Likewise most streptococci, S. pneumoniae decorates its surface with adhesive pili, composed of covalently linked subunits and involved in the attachment to epithelial cells and virulence. The pneumococcal pili are encoded by two genomic regions, pilus islet 1 (PI-1), and pilus islet-2 (PI-2), which are present in about 30% and 16% of the pneumococcal strains, respectively. PI-1 exists in three clonally related variants, whereas PI-2 is highly conserved. The presence of the islets does not correlate with the serotype of the strains, but with the genotype (as determined by Multi Locus Sequence Typing). The prevalence of PI-1 and PI-2 positive strains is similar in isolates from invasive disease and carriage. To better dissect a possible association between PIs presence and disease we evaluated the distribution of the two PIs in a panel of 113 acute otitis media (AOM) clinical isolates from Israel. PI-1 was present in 30.1% (N=34) of the isolates tested, and PI-2 in 7% (N=8). We found that 50% of the PI-1 positive isolates belonged to the international clones Spain9V-3 (ST156) and Taiwan19F-14 (ST236), and that PI-2 was not present in the absence of Pl-1. In conclusion, there was no correlation between PIs presence and AOM, and, in general, the observed differences in PIs prevalence are strictly dependent upon regional differences in the distribution of the clones. Finally, in the AOM collection the prevalence of PI-1 was higher among antibiotic resistant isolates, confirming previous indications obtained by the in silico analysis of the MLST database collection. Since the pilus-1 subunits were shown to confer protection in mouse models of infection both in active and passive immunization studies, and were regarded as potential candidates for a new generation of protein-based vaccines, the functional characterization was mainly focused on S. pneumoniae pilus -1 components. The pneumococcal pilus-1 is composed of three subunits, RrgA, RrgB and RrgC, each stabilized by intra-molecular isopeptide bonds and covalently polymerized by means of inter-molecular isopeptide bonds to form an extended fibre. The pilus shaft is a multimeric structure mainly composed by the RrgB backbone subunit. The minor ancillary proteins are located at the tip and at the base of the pilus, where they have been proposed to act as the major adhesin (RrgA) and as the pilus anchor (RrgC), respectively. RrgA is protective in in vivo mouse models, and exists in two variants (clades I and II). Mapping of the sequence variability onto the RrgA structure predicted from X-ray data showed that the diversity was restricted to the “head” of the protein, which contains the putative binding domains, whereas the elongated “stalk” was mostly conserved. To investigate whether this variability could influence the adhesive capacity of RrgA and to map the regions important for binding, two full-length protein variants and three recombinant RrgA portions were tested for adhesion to lung epithelial cells and to purified extracellular matrix (ECM) components. The two RrgA variants displayed similar binding abilities, whereas none of the recombinant fragments adhered at levels comparable to those of the full-length protein, suggesting that proper folding and structural arrangement are crucial to retain protein functionality. Furthermore, the two RrgA variants were shown to be cross-reactive in vitro and cross-protective in vivo in a murine model of passive immunization. Taken together, these data indicate that the region implicated in adhesion and the functional epitopes responsible for the protective ability of RrgA may be conserved and that the considerable level of variation found within the “head” domain of RrgA may have been generated by immunologic pressure without impairing the functional integrity of the pilus.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

A systematic characterization of the composition and structure of the bacterial cell-surface proteome and its complexes can provide an invaluable tool for its comprehensive understanding. The knowledge of protein complexes composition and structure could offer new, more effective targets for a more specific and consequently effective immune response against a complex instead of a single protein. Large-scale protein-protein interaction screens are the first step towards the identification of complexes and their attribution to specific pathways. Currently, several methods exist for identifying protein interactions and protein microarrays provide the most appealing alternative to existing techniques for a high throughput screening of protein-protein interactions in vitro under reasonably straightforward conditions. In this study approximately 100 proteins of Group A Streptococcus (GAS) predicted to be secreted or surface exposed by genomic and proteomic approaches were purified in a His-tagged form and used to generate protein microarrays on nitrocellulose-coated slides. To identify protein-protein interactions each purified protein was then labeled with biotin, hybridized to the microarray and interactions were detected with Cy3-labelled streptavidin. Only reciprocal interactions, i. e. binding of the same two interactors irrespective of which of the two partners is in solid-phase or in solution, were taken as bona fide protein-protein interactions. Using this approach, we have identified 20 interactors of one of the potent toxins secreted by GAS and known as superantigens. Several of these interactors belong to the molecular chaperone or protein folding catalyst families and presumably are involved in the secretion and folding of the superantigen. In addition, a very interesting interaction was found between the superantigen and the substrate binding subunit of a well characterized ABC transporter. This finding opens a new perspective on the current understanding of how superantigens are modified by the bacterial cell in order to become major players in causing disease.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

This PhD thesis discusses the rationale for design and use of synthetic oligosaccharides for the development of glycoconjugate vaccines and the role of physicochemical methods in the characterization of these vaccines. The study concerns two infectious diseases that represent a serious problem for the national healthcare programs: human immunodeficiency virus (HIV) and Group A Streptococcus (GAS) infections. Both pathogens possess distinctive carbohydrate structures that have been described as suitable targets for the vaccine design. The Group A Streptococcus cell membrane polysaccharide (GAS-PS) is an attractive vaccine antigen candidate based on its conserved, constant expression pattern and the ability to confer immunoprotection in a relevant mouse model. Analysis of the immunogenic response within at-risk populations suggests an inverse correlation between high anti-GAS-PS antibody titres and GAS infection cases. Recent studies show that a chemically synthesized core polysaccharide-based antigen may represent an antigenic structural determinant of the large polysaccharide. Based on GAS-PS structural analysis, the study evaluates the potential to exploit a synthetic design approach to GAS vaccine development and compares the efficiency of synthetic antigens with the long isolated GAS polysaccharide. Synthetic GAS-PS structural analogues were specifically designed and generated to explore the impact of antigen length and terminal residue composition. For the HIV-1 glycoantigens, the dense glycan shield on the surface of the envelope protein gp120 was chosen as a target. This shield masks conserved protein epitopes and facilitates virus spread via binding to glycan receptors on susceptible host cells. The broadly neutralizing monoclonal antibody 2G12 binds a cluster of high-mannose oligosaccharides on the gp120 subunit of HIV-1 Env protein. This oligomannose epitope has been a subject to the synthetic vaccine development. The cluster nature of the 2G12 epitope suggested that multivalent antigen presentation was important to develop a carbohydrate based vaccine candidate. I describe the development of neoglycoconjugates displaying clustered HIV-1 related oligomannose carbohydrates and their immunogenic properties.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

Group A Streptococcus is a Gram-positive human pathogen able to colonize both upper respiratory tract and skin. GAS is responsible for several acute diseases and autoimmune sequelae that account for half a million deaths worldwide every year (Cunningham et al., 2000). As other bacteria, GAS infections requires the capacity of the pathogen to adhere to host tissues and to form cell aggregates. The ability to persist in distinct host niches like the throat and the skin and to trigger infections is associated with the expression of different GAS virulence factors. GAS pili has been described as important virulence factors encoded by different FCT-operon regions. Based on this information, we decided to study the possible effect of environmental conditions that could regulate the pili expression. In this study we reported the influence of pH environment variations in biofilm formation for strains pertaining to a panel of different GAS FCT-types. The biofilm formation was promoted, excepted in the FCT-1 strains, by a changing in pH from physiological to acidic condition of growth in in vitro biofilm assay. By analyzing the possible association between biofilm formation and pH dependence, we have found that in FCT-2 and FCT-3 strains, the biofilm is promoted by pH reduction leading to an increase of pili expression. These data confirmed a direct link between pH dependent pilus expression and biofilm formation in GAS. As pili are a multi component structure we decided to investigate the functional role of one of its subunits, the AP-1 protein. AP-1 is highly conserved through the different FCT-types and suggests a possible essential role for the pili function. We focused our attention on the AP-1 protein encoded by the FCT-1 strains (M6). In particular this AP-1 protein contains the von Willebrand Factor A (VWFA) domain, which share an homology with the human VWFA domain that has been reported to be involved in adhesion process. We have demonstrated that the AP-1 protein binds to human epithelial cells by its VWFA domain, whereas the biofilm formation is mediated by the N-terminal region of AP-1 protein. Moreover, analyzing the importance of AP-1 in in vivo experiments we found a major capacity of tissue dissemination for the wild-type strain compared to the isogenic AP-1 deletion mutant. Pili have been also reported as potential vaccine candidates against Gram positive bacteria. For these reason we decided to investigate the relationship between cross reaction of sera raised against different GAS and GBS pilin subunits and the presence of a conserved Cna_B domain, in different pilin components. Our idea was to investigate if, using pilus conserved domains, a broad coverage vaccine against streptococcal infection could be possible.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

Bioinformatic analysis of Group A Streptococcus (GAS) genomes aiming at the identification of new vaccine antigens, revealed the presence of a gene coding for a putative surface-associated protein, named GAS40, inducing protective antibodies in an animal model of sepsis. The aim of our study was to unravel the involvement of GAS40 in cell division processes and to identify the putative interactor. Firstly, bioinformatic analysis showed that gas40 shares homology with ezrA, a gene coding for a negative regulator of Z-ring formation during cell division process. Both scanning and transmission electron microscopy indicated morphological differences between wild-type and the GAS40 knock-out mutant strain, with the latter showing an impaired capacity to divide resulting in the formation of very long chains. Moreover, when the localization of the antigen on the bacterial surface was analyzed, we found that in bacteria grown at exponential phase GAS40 specifically localized at septum, indicating a possible role in cell division. Furthermore, by ELISA and co-sedimentation assays, we found that GAS40 is able to interact with FtsZ, a protein involved in Z-ring formation during cell division process. These data together with the co-localization of GAS40/FtsZ at bacterial septum demonstrated by by confocal microscopy, strongly support the hypothesis for a key role of GAS40 in bacterial cell division.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

In Group B Streptococcus (GBS) three structurally distinct types of pili have been discovered as potential virulence factors and vaccine candidates. The pilus-forming proteins are assembled into high-molecular weight polymers via a transpeptidation mechanism mediated by specific class C sortases. Using a multidisciplinary approach including bioinformatics, structural and biochemical studies and in vivo mutagenesis we performed a broad characterization of GBS sortase C. The high resolution X-ray structure of the enzymes revealed that the active site, located into the β-barrel core of the enzyme, is made of the catalytic triad His157-Cys219-Arg228 and covered by a loop, known as the “lid”. We show that the catalytic triad and the predicted N- and C-terminal trans-membrane regions are required for the enzyme activity. Interestingly, by in vivo complementation mutagenesis studies we found that the deletion of the entire lid loop or mutations in specific lid key residues had no effect on catalytic activity of the enzyme. In addition, kinetic characterizations of recombinant enzymes indicate that the lid mutants can still recognize and cleave the substrate-mimicking peptide at least as well as the wild type protein.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

The development of vaccines directed against polysaccharide capsules of S. pneumoniae, H. influenzae and N. meningitidis have been of great importance in preventing potentially fatal infections. Bacterial capsular polysaccharides are T-cell-independent antigens that induce specific antibody response characterized by IgM immunoglobulins, with a very low IgG class switched response and lack of capability of inducing a booster response. The inability of pure polysaccharides to induce sustained immune responses has required the development of vaccines containing polysaccharides conjugated to a carrier protein, with the aim to generate T cell help. It is clear that the immunogenicity of glycoconjugate vaccines can vary depending on different factors, e.g. chemical nature of the linked polysaccharide, carrier protein, age of the target population, adjuvant used. The present study analyzes the memory B cell (MBC) response to the polysaccharide and to the carrier protein following vaccination with a glycoconjugate vaccine for the prevention of Group B streptococcus (GBS) infection. Not much is known about the role of adjuvants in the development of immunological memory raised against GBS polysaccharides, as well as about the influence of having a pre-existing immunity against the carrier protein on the B cell response raised against the polysaccharide component of the vaccine. We demonstrate in the mouse model that adjuvants can increase the antibody and memory B cell response to the carrier protein and to the conjugated polysaccharide. We also demonstrate that a pre-existing immunity to the carrier protein favors the development of the antibody and memory B cell response to subsequent vaccinations with a glycoconjugate, even in absence of adjuvants. These data provide a useful insight for a better understanding of the mechanism of action of this class of vaccines and for designing the best vaccine that could result in a productive and long lasting memory response.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

Diabetes mellitus is considered a risk factor for Group B Streptococcus (GBS) infections. Typically, this pathology is associated to high glucose levels in the bloodstream. Although clinical evidences support this notion, the physiological mechanisms underlying GBS adaptation to such conditions are not yet defined. In the attempt to address this issue, we performed comparative global gene expression analysis of GBS grown under glucose-stress conditions and observed that a number of metabolic and virulence genes was differentially regulated. Of importance, we also demonstrated that by knocking-out the csrRS locus the transcription profile of GBS grown in high-glucose conditions was profoundly affected, with more than a third of glucose-dependent genes, including the virulence factor bibA, found to be controlled by this two-component system. Furthermore, in vitro molecular analysis showed that CsrR specifically binds to the bibA promoter and the phosphorilation increases the affinity of the regulator to this promoter region. Moreover, we demonstrated that CsrR acts as a repressor of bibA expression by binding to its promoter in vivo. In conclusion, this work by elucidating both the response of GBS to pathological glucose conditions and the underlined molecular mechanisms will set the basis for a better understanding of GBS pathogenesis.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

Streptococcus agalactiae, also known as Group B Streptococcus (GBS) is the primary colonizer of the anogenital mucosa of up to 40% of healthy women and an important cause of invasive neonatal infections worldwide. Among the 10 known capsular serotypes, GBS type III accounts for 30-76% of the cases of neonatal meningitis. Biofilms are dense aggregates of surface-adherent microorganisms embedded in an exopolysaccharide matrix. Centers for Disease Control and Prevention estimate that 65% of human bacterial infections involve biofilms (Post et al., 2004). In recent years, the ability of GBS to form biofilm attracted attention for its possible role in fitness and/or virulence. Here, a new in vitro biofilm formation protocol was developed to guarantee more stringent conditions, to better discriminate between strong-, low- and non- biofilm forming strains and reduce ambiguous data interpretation. This protocol was applied to screen the in vitro biofilm formation ability of more than 350 GBS clinical isolates from pregnant women and neonatal infections belonging to different serotype, in relation to media composition and pH. The results showed the enhancement of GBS biofilm formation in acidic condition and identified a subset of isolates belonging to serotypes III and V that forms strong biofilms in these conditions. Interestingly, the best biofilm formers belonged to the serotype III hypervirulent clone ST-17.It was also found that pH 5.0 induces down-regulation of the capsule but that this reduction is not enough by itself to ensure biofilm formation. Moreover, the ability of proteinase K to strongly inhibit biofilm formation and to disaggregate mature biofilms suggested that proteins play an essential role in promoting GBS biofilm formation and contribute to the biofilm structural stability. Finally, a set of proteins potentially expressed during the GBS in vitro biofilm formation were identified by mass spectrometry.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

Group B Streptococcus (GBS), in its transition from commensal to pathogen, will encounter diverse host environments and thus require coordinately controlling its transcriptional responses to these changes. This work was aimed at better understanding the role of two component signal transduction systems (TCS) in GBS pathophysiology through a systematic screening procedure. We first performed a complete inventory and sensory mechanism classification of all putative GBS TCS by genomic analysis. Five TCS were further investigated by the generation of knock-out strains, and in vitro transcriptome analysis identified genes regulated by these systems, ranging from 0.1-3% of the genome. Interestingly, two sugar phosphotransferase systems appeared differently regulated in the knock-out mutant of TCS-16, suggesting an involvement in monitoring carbon source availability. High throughput analysis of bacterial growth on different carbon sources showed that TCS-16 was necessary for growth of GBS on fructose-6-phosphate. Additional transcriptional analysis provided further evidence for a stimulus-response circuit where extracellular fructose-6-phosphate leads to autoinduction of TCS-16 with concomitant dramatic up-regulation of the adjacent operon encoding a phosphotransferase system. The TCS-16-deficient strain exhibited decreased persistence in a model of vaginal colonization and impaired growth/survival in the presence of vaginal mucoid components. All mutant strains were also characterized in a murine model of systemic infection, and inactivation of TCS-17 (also known as RgfAC) resulted in hypervirulence. Our data suggest a role for the previously unknown TCS-16, here named FspSR, in bacterial fitness and carbon metabolism during host colonization, and also provide experimental evidence for TCS-17/RgfAC involvement in virulence.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

Group B Streptococcus [GBS; Streptococcus agalactiae] is the leading cause of life-threatening diseases in newborn and is also becoming a common cause of invasive diseases in non-pregnant, elderly and immune-compromised adults. Pili, long filamentous fibers protruding from the bacterial surface, have been discovered in GBS, as important virulence factors and vaccine candidates. Gram-positive bacteria build pili on their cell surface via a class C sortase-catalyzed transpeptidation mechanism from pilin protein substrates. Despite the availability of several crystal structures, pilus-related C sortases remain poorly characterized to date and their mechanisms of transpeptidation and regulation need to be further investigated. The available three-dimensional structures of these enzymes reveal a typical sortase fold except for the presence of a unique feature represented by an N-terminal highly flexible loop, known as the “lid”. This region interacts with the residues composing the catalytic triad and covers the active site, thus maintaining the enzyme in an auto-inhibited state and preventing the accessibility to the substrate. It is believed that enzyme activation may occur only after lid displacement from the catalytic domain. In this work we provide the first direct evidence of the regulatory role of the lid, demonstrating that it is possible to obtain in vitro an efficient polymerization of pilin subunits using an active C sortase lid mutant carrying a single residue mutation in the lid region. Moreover, biochemical analyses of this recombinant mutant reveal that the lid confers thermodynamic and proteolytic stability to the enzyme. A further characterization of this sortase active mutant showed promiscuity in the substrate recognition, as it is able to polymerize different LPXTG-proteins in vitro.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

Group B Streptococcus (GBS) is a Gram-positive human pathogen representing one of the most common causes of life-threatening bacterial infections such as sepsis and meningitis in neonates. Covalently polymerized pilus-like structures have been discovered in GBS as important virulence factors as well as vaccine candidates. Pili are protein polymers forming long and thin filamentous structures protruding from bacterial cells, mediating adhesion and colonization to host cells. Gram-positive bacteria, including GBS, build pili on their cell surface via a class C sortase-catalyzed transpeptidation mechanism from pilin protein substrates that are the backbone protein forming the pilus shaft and two ancillary proteins. Also the cell-wall anchoring of the pilus polymers made of covalently linked pilin subunits is mediated by a sortase enzyme. GBS expresses three structurally distinct pilus types (type 1, 2a and 2b). Although the mechanisms of assembly and cell wall anchoring of GBS types 1 and 2a pili have been investigated, those of pilus 2b are not understood until now. Pilus 2b is frequently found in ST-17 strains that are mostly associated with meningitis and high mortality rate especially in infants. In this work the assembly mechanism of GBS pilus type 2b has been elucidated by dissecting through genetic, biochemical and structural studies the role of the two pilus-associated sortases. The most significant findings show that pilus 2b assembly appears “non-canonical”, differing significantly from current pilus assembly models in Gram-positive pathogens. Only sortase-C1 is involved in pilin polymerization, while the sortase-C2 does not act as a pilin polymerase, but it is involved in cell-wall pilus anchoring. Our findings provide new insights into pili biogenesis in Gram-positive bacteria. Moreover, the role of this pilus type during host infection has been investigated. By using a mouse model of meningitis we demonstrated that type 2b pilus contributes to pathogenesis of meningitis in vivo.