5 resultados para STARS: POPULATION III
em AMS Tesi di Dottorato - Alm@DL - Università di Bologna
Resumo:
This work is about the role that environment plays in the production of evolutionary significant variations. It starts with an historical introduction about the concept of variation and the role of environment in its production. Then, I show how a lack of attention to these topics may lead to serious mistakes in data interpretation. A statistical re-analysis of published data on the effects of malnutrition on dental eruption, shows that what has been interpreted as an increase in the mean value, is actually linked to increase of variability. In Chapter 3 I present the topic of development as a link between variability and environmental influence, giving a review of the possible mechanisms by which development influences evolutionary dynamics. Chapter 4 is the core chapter of the thesis; I investigated the role of environment in the development of dental morphology. I used dental hypoplasia as a marker of stress, characterizing two groups. Comparing the morphology of upper molars in the two groups, three major results came out: (i) there is a significant effect of environmental stressors on the overall morphology of upper molars; (ii) the developmental response increases morphological variability of the stressed population; (iii) increase of variability is directional: stressed individuals have increased cusps dimensions and number. I also hypothesized the molecular mechanisms that could be responsible of the observed effects. In Chapter 5, I present future perspectives for developing this research. The direction of dental development response is the same direction of the trend in mammalian dental evolution. Since malnutrition triggers the developmental response, and this particular kind of stressor must have been very common in our class evolutionary history, I propose the possibility that environmental stress actively influenced mammals evolution. Moreover, I discuss the possibility of reconsidering the role of natural selection in the evolution of dental morphology.
Resumo:
With the goal of studying ML along the RGB, mid-IR observations of a carefully selected sample of 17 Galactic globular clusters (GGCs) with different metallicity and horizontal branch (HB) morphology have been secured with IRAC on board Spitzer: a global sample counting about 8000 giant has been obtained. Suitable complementary photometry in the optical and near-IR has been also secured in order to properly characterize the stellar counterparts to the Spitzer sources and their photospheric parameters. Stars with color (i.e. dust) excess have been identified, their likely circumstellar emission quantified and modelled, and empirical estimates of mass loss rates and timescales obtained. We find that mass loss rates increases with increasing stellar luminosity and decreasing metallicity. For a given luminosity, we find that ML rates are systematically higher than the prediction by extrapolating the Reimers law. CMDs constructed from ground based near-IR and IRAC bands show that at a given luminosity some stars have dusty envelopes and others do not. From this, we deduce that the mass loss is episodic and is ``on'' for some fraction of the time. The total mass lost on the RGB can be easily computed by multiplying ML rates by the ML timescales and integrating over the evolutionary timescale. The average total mass lost moderately increases with increasing metallicity, and for a given metallicity is systematically higher in clusters with extended blue HB.
Resumo:
This PhD Thesis is part of a long-term wide research project, carried out by the "Osservatorio Astronomico di Bologna (INAF-OABO)", that has as primary goal the comprehension and reconstruction of formation mechanism of galaxies and their evolution history. There is now substantial evidence, both from theoretical and observational point of view, in favor of the hypothesis that the halo of our Galaxy has been at least partially, built up by the progressive accretion of small fragments, similar in nature to the present day dwarf galaxies of the Local Group. In this context, the photometric and spectroscopic study of systems which populate the halo of our Galaxy (i.e. dwarf spheroidal galaxy, tidal streams, massive globular cluster, etc) permits to discover, not only the origin and behaviour of these systems, but also the structure of our Galactic halo, combined with its formation history. In fact, the study of the population of these objects and also of their chemical compositions, age, metallicities and velocity dispersion, permit us not only an improvement in the understanding of the mechanisms that govern the Galactic formation, but also a valid indirect test for cosmological model itself. Specifically, in this Thesis we provided a complete characterization of the tidal Stream of the Sagittarius dwarf spheroidal galaxy, that is the most striking example of the process of tidal disruption and accretion of a dwarf satellite in to our Galaxy. Using Red Clump stars, extracted from the catalogue of the Sloan Digital Sky Survey (SDSS) we obtained an estimate of the distance, the depth along the line of sight and of the number density for each detected portion of the Stream (and more in general for each detected structure along our line of sight). Moreover comparing the relative number (i.e. the ratio) of Blue Horizontal Branch stars and Red Clump stars (the two features are tracers of different age/different metallicity populations) in the main body of the galaxy and in the Stream, in order to verify the presence of an age-metallicity gradient along the Stream. We also report the detection of a population of Red Clump stars probably associated with the recently discovered Bootes III stellar system. Finally, we also present the results of a survey of radial velocities over a wide region, extending from r ~ 10' out to r ~ 80' within the massive star cluster Omega Centauri. The survey was performed with FLAMES@VLT, to study the velocity dispersion profile in the outer regions of this stellar system. All the results presented in this Thesis, have already been published in refeered journals.
Resumo:
Our view of Globular Clusters has deeply changed in the last decade. Modern spectroscopic and photometric data have conclusively established that globulars are neither coeval nor monometallic, reopening the issue of the formation of such systems. Their formation is now schematized as a two-step process, during which the polluted matter from the more massive stars of a first generation gives birth, in the cluster innermost regions, to a second generation of stars with the characteristic signature of fully CNO-processed matter. To date, star-to-star variations in abundances of the light elements (C, N, O, Na) have been observed in stars of all evolutionary phases in all properly studied Galactic globular clusters. Multiple or broad evolutionary sequences have also been observed in nearly all the clusters that have been observed with good signal-to-noise in the appropriate photometric bands. The body of evidence suggests that spreads in light-element abundances can be fairly well traced by photometric indices including near ultraviolet passbands, as CNO abundance variations affect mainly wavelengths shorter than ~400 nm owing to the rise of some NH and CN molecular absorption bands. Here, we exploit this property of near ultraviolet photometry to trace internal chemical variations and combined it with low resolution spectroscopy aimed to derive carbon and nitrogen abundances in order to maximize the information on the multiple populations. This approach has been proven to be very effective in (i) detecting multiple population, (ii) characterizing their global properties (i.e., relative fraction of stars, location in the color-magnitude diagram, spatial distribution, and trends with cluster parameters) and (iii) precisely tagging their chemical properties (i.e., extension of the C-N anticorrelation, bimodalities in the N content).
Resumo:
Blue straggler stars (BSSs) are brighter and bluer (hotter) than the main-sequence (MS) turnoff and they are known to be more massive than MS stars.Two main scenarios for their formation have been proposed:collision-induced stellar mergers (COL-BSSs),or mass-transfer in binary systems (MT-BSSs).Depleted surface abundances of C and O are expected for MT-BSSs,whereas no chemical anomalies are predicted for COL-BSSs.Both MT- and COL-BSSs should rotate fast, but braking mechanisms may intervene with efficiencies and time-scales not well known yet,thus preventing a clear prediction of the expected rotational velocities.Within this context,an extensive survey is ongoing by using the multi-object spectrograph FLAMES@VLT,with the aim to obtain abundance patterns and rotational velocities for representative samples of BSSs in several Galactic GCs.A sub-population of CO-depleted BSSs has been identified in 47 Tuc,with only one fast rotating star detected.For this PhD Thesis work I analyzed FLAMES spectra of more than 130 BSSs in four GCs:M4,NGC 6397,M30 and ω Centauri.This is the largest sample of BSSs spectroscopically investigated so far.Hints of CO depletion have been observed in only 4-5 cases (in M30 and ω Centauri),suggesting either that the majority of BSSs have a collisional origin,or that the CO-depletion is a transient phenomenon.Unfortunately,no conclusions in terms of formation mechanism could be drawn in a large number of cases,because of the effects of radiative levitation. Remarkably,however,this is the first time that evidence of radiative levitation is found in BSSs hotter than 8200 K.Finally, we also discovered the largest fractions of fast rotating BSSs ever observed in any GCs:40% in M4 and 30% in ω Centauri.While not solving the problem of BSS formation,these results provide invaluable information about the BSS physical properties,which is crucial to build realistic models of their evolution.