4 resultados para SPINAL MULTIPLE-SCLEROSIS

em AMS Tesi di Dottorato - Alm@DL - Università di Bologna


Relevância:

80.00% 80.00%

Publicador:

Resumo:

La neuroriabilitazione è un processo attraverso cui individui affetti da patologie neurologiche mirano al conseguimento di un recupero completo o alla realizzazione del loro potenziale ottimale benessere fisico, mentale e sociale. Elementi essenziali per una riabilitazione efficace sono: una valutazione clinica da parte di un team multidisciplinare, un programma riabilitativo mirato e la valutazione dei risultati conseguiti mediante misure scientifiche e clinicamente appropriate. Obiettivo principale di questa tesi è stato sviluppare metodi e strumenti quantitativi per il trattamento e la valutazione motoria di pazienti neurologici. I trattamenti riabilitativi convenzionali richiedono a pazienti neurologici l’esecuzione di esercizi ripetitivi, diminuendo la loro motivazione. La realtà virtuale e i feedback sono in grado di coinvolgerli nel trattamento, permettendo ripetibilità e standardizzazione dei protocolli. È stato sviluppato e valutato uno strumento basato su feedback aumentati per il controllo del tronco. Inoltre, la realtà virtuale permette l’individualizzare il trattamento in base alle esigenze del paziente. Un’applicazione virtuale per la riabilitazione del cammino è stata sviluppata e testata durante un training su pazienti di sclerosi multipla, valutandone fattibilità e accettazione e dimostrando l'efficacia del trattamento. La valutazione quantitativa delle capacità motorie dei pazienti viene effettuata utilizzando sistemi di motion capture. Essendo il loro uso nella pratica clinica limitato, una metodologia per valutare l’oscillazione delle braccia in soggetti parkinsoniani basata su sensori inerziali è stata proposta. Questi sono piccoli, accurati e flessibili ma accumulano errori durante lunghe misurazioni. È stato affrontato questo problema e i risultati suggeriscono che, se il sensore è sul piede e le accelerazioni sono integrate iniziando dalla fase di mid stance, l’errore e le sue conseguenze nella determinazione dei parametri spaziali sono contenuti. Infine, è stata presentata una validazione del Kinect per il tracking del cammino in ambiente virtuale. Risultati preliminari consentono di definire il campo di utilizzo del sensore in riabilitazione.

Relevância:

80.00% 80.00%

Publicador:

Resumo:

Il lavoro di tesi analizza da un punto di vista metodologico e concettuale le narrazioni di malattia delle persone affette da sclerosi multipla. Lo scopo della ricerca è duplice: da un lato quello di indagare quali siano le trame narrative di coloro che raccontano la diagnosi della loro malattia, e dall’altro di analizzare i vissuti di malattia attraverso le categorie della sociologia della salute e della medicina e dell’antropologia medica.

Relevância:

80.00% 80.00%

Publicador:

Resumo:

Quantitative Susceptibility Mapping (QSM) is an advanced magnetic resonance technique that can quantify in vivo biomarkers of pathology, such as alteration in iron and myelin concentration. It allows for the comparison of magnetic susceptibility properties within and between different subject groups. In this thesis, QSM acquisition and processing pipeline are discussed, together with clinical and methodological applications of QSM to neurodegeneration. In designing the studies, significant emphasis was placed on results reproducibility and interpretability. The first project focuses on the investigation of cortical regions in amyotrophic lateral sclerosis. By examining various histogram susceptibility properties, a pattern of increased iron content was revealed in patients with amyotrophic lateral sclerosis compared to controls and other neurodegenerative disorders. Moreover, there was a correlation between susceptibility and upper motor neuron impairment, particularly in patients experiencing rapid disease progression. Similarly, in the second application, QSM was used to examine cortical and sub-cortical areas in individuals with myotonic dystrophy type 1. The thalamus and brainstem were identified as structures of interest, with relevant correlations with clinical and laboratory data such as neurological evaluation and sleep records. In the third project, a robust pipeline for assessing radiomic susceptibility-based features reliability was implemented within a cohort of patients with multiple sclerosis and healthy controls. Lastly, a deep learning super-resolution model was applied to QSM images of healthy controls. The employed model demonstrated excellent generalization abilities and outperformed traditional up-sampling methods, without requiring a customized re-training. Across the three disorders investigated, it was evident that QSM is capable of distinguishing between patient groups and healthy controls while establishing correlations between imaging measurements and clinical data. These studies lay the foundation for future research, with the ultimate goal of achieving earlier and less invasive diagnoses of neurodegenerative disorders within the context of personalized medicine.