3 resultados para SOLAR-RADIATION

em AMS Tesi di Dottorato - Alm@DL - Università di Bologna


Relevância:

60.00% 60.00%

Publicador:

Resumo:

This PhD thesis addresses the topic of large-scale interactions between climate and marine biogeochemistry. To this end, centennial simulations are performed under present and projected future climate conditions with a coupled ocean-atmosphere model containing a complex marine biogeochemistry model. The role of marine biogeochemistry in the climate system is first investigated. Phytoplankton solar radiation absorption in the upper ocean enhances sea surface temperatures and upper ocean stratification. The associated increase in ocean latent heat losses raises atmospheric temperatures and water vapor. Atmospheric circulation is modified at tropical and extratropical latitudes with impacts on precipitation, incoming solar radiation, and ocean circulation which cause upper-ocean heat content to decrease at tropical latitudes and to increase at middle latitudes. Marine biogeochemistry is tightly related to physical climate variability, which may vary in response to internal natural dynamics or to external forcing such as anthropogenic carbon emissions. Wind changes associated with the North Atlantic Oscillation (NAO), the dominant mode of climate variability in the North Atlantic, affect ocean properties by means of momentum, heat, and freshwater fluxes. Changes in upper ocean temperature and mixing impact the spatial structure and seasonality of North Atlantic phytoplankton through light and nutrient limitations. These changes affect the capability of the North Atlantic Ocean of absorbing atmospheric CO2 and of fixing it inside sinking particulate organic matter. Low-frequency NAO phases determine a delayed response of ocean circulation, temperature and salinity, which in turn affects stratification and marine biogeochemistry. In 20th and 21st century simulations natural wind fluctuations in the North Pacific, related to the two dominant modes of atmospheric variability, affect the spatial structure and the magnitude of the phytoplankton spring bloom through changes in upper-ocean temperature and mixing. The impacts of human-induced emissions in the 21st century are generally larger than natural climate fluctuations, with the phytoplankton spring bloom starting one month earlier than in the 20th century and with ~50% lower magnitude. This PhD thesis advances the knowledge of bio-physical interactions within the global climate, highlighting the intrinsic coupling between physical climate and biosphere, and providing a framework on which future studies of Earth System change can be built on.

Relevância:

60.00% 60.00%

Publicador:

Resumo:

The interaction between atmosphere–land–ocean–biosphere systems plays a prominent role on the atmospheric dynamics and on the convective rainfall distribution over the West Africa monsoon area during the boreal summer. In particular, the initialization of convective systems in the Sub – Sahelian region has been directly linked to soil moisture heterogeneities identified as the major triggering, development and propagation of convective systems. The present study aims at investigating African monsoon large scale convective dynamics and rainfall diurnal cycle through an exploration of the hypothesis behind the mechanisms of a monsoon phenomenon as an emergence of a collective dynamics of many propagating convective systems. Such hypothesis is based on the existence of an internal self – regulation mechanism among the various components. To achieve these results a multiple analysis was performed based on remote sensed rainfall dataset, and global and regional modelling data for a period of 5 seasons: 2004 - 2008. Satellite rainfall data and convective occurrence variability were studied for assessing typical spatio – temporal signatures and characteristics with an emphasis to the diurnal cycle footprint. A global model and regional model simulation datasets, specifically developed for this analysis and based on Regional Atmospheric Modelling System – RAMS, have been analysed. Results from numerical model datasets highlight the evidence of a synchronization between the destabilization of the convective boundary layer and rainfall occurrence due to the solar radiation forcing through the latent heat release. This supports the conclusion that the studied interacting systems are associated with a process of mutual adjustment of rhythms. Furthermore, this rainfall internal coherence was studied in relation to the West African Heat Low pressure system, which has a prominent role in the large scale summer variability over the Mediterranean area since it is acting as one of dynamic link between sub tropical and midlatitudes variability.

Relevância:

60.00% 60.00%

Publicador:

Resumo:

The present thesis is focused on the study of innovative Si-based materials for third generation photovoltaics. In particular, silicon oxi-nitride (SiOxNy) thin films and multilayer of Silicon Rich Carbide (SRC)/Si have been characterized in view of their application in photovoltaics. SiOxNy is a promising material for applications in thin-film solar cells as well as for wafer based silicon solar cells, like silicon heterojunction solar cells. However, many issues relevant to the material properties have not been studied yet, such as the role of the deposition condition and precursor gas concentrations on the optical and electronic properties of the films, the composition and structure of the nanocrystals. The results presented in the thesis aim to clarify the effects of annealing and oxygen incorporation within nc-SiOxNy films on its properties in view of the photovoltaic applications. Silicon nano-crystals (Si NCs) embedded in a dielectric matrix were proposed as absorbers in all-Si multi-junction solar cells due to the quantum confinement capability of Si NCs, that allows a better match to the solar spectrum thanks to the size induced tunability of the band gap. Despite the efficient solar radiation absorption capability of this structure, its charge collection and transport properties has still to be fully demonstrated. The results presented in the thesis aim to the understanding of the transport mechanisms at macroscopic and microscopic scale. Experimental results on SiOxNy thin films and SRC/Si multilayers have been obtained at macroscopical and microscopical level using different characterizations techniques, such as Atomic Force Microscopy, Reflection and Transmission measurements, High Resolution Transmission Electron Microscopy, Energy-Dispersive X-ray spectroscopy and Fourier Transform Infrared Spectroscopy. The deep knowledge and improved understanding of the basic physical properties of these quite complex, multi-phase and multi-component systems, made by nanocrystals and amorphous phases, will contribute to improve the efficiency of Si based solar cells.