4 resultados para SOA
em AMS Tesi di Dottorato - Alm@DL - Università di Bologna
Resumo:
The main objective of this thesis was the chemical characterization of synthetic secondary organic aerosol (SOA) produced from atmospherically relevant anthropogenic and biogenic VOCs during reaction chamber experiments. In parallel, the resulting chemical features of these laboratory-SOA were used to interpret the composition of ambient samples of atmospheric fine particulate matter collected at several sites in Europe, in order to determine the fraction of ambient aerosol organic mass accounted for by biogenic and anthropogenic SOA.
Resumo:
Atmospheric aerosol particles directly impact air quality and participate in controlling the climate system. Organic Aerosol (OA) in general accounts for a large fraction (10–90%) of the global submicron (PM1) particulate mass. Chemometric methods for source identification are used in many disciplines, but methods relying on the analysis of NMR datasets are rarely used in atmospheric sciences. This thesis provides an original application of NMR-based chemometric methods to atmospheric OA source apportionment. The method was tested on chemical composition databases obtained from samples collected at different environments in Europe, hence exploring the impact of a great diversity of natural and anthropogenic sources. We focused on sources of water-soluble OA (WSOA), for which NMR analysis provides substantial advantages compared to alternative methods. Different factor analysis techniques are applied independently to NMR datasets from nine field campaigns of the project EUCAARI and allowed the identification of recurrent source contributions to WSOA in European background troposphere: 1) Marine SOA; 2) Aliphatic amines from ground sources (agricultural activities, etc.); 3) Biomass burning POA; 4) Biogenic SOA from terpene oxidation; 5) “Aged” SOAs, including humic-like substances (HULIS); 6) Other factors possibly including contributions from Primary Biological Aerosol Particles, and products of cooking activities. Biomass burning POA accounted for more than 50% of WSOC in winter months. Aged SOA associated with HULIS was predominant (> 75%) during the spring-summer, suggesting that secondary sources and transboundary transport become more important in spring and summer. Complex aerosol measurements carried out, involving several foreign research groups, provided the opportunity to compare source apportionment results obtained by NMR analysis with those provided by more widespread Aerodyne aerosol mass spectrometers (AMS) techniques that now provided categorization schemes of OA which are becoming a standard for atmospheric chemists. Results emerging from this thesis partly confirm AMS classification and partly challenge it.
Resumo:
Embedding intelligence in extreme edge devices allows distilling raw data acquired from sensors into actionable information, directly on IoT end-nodes. This computing paradigm, in which end-nodes no longer depend entirely on the Cloud, offers undeniable benefits, driving a large research area (TinyML) to deploy leading Machine Learning (ML) algorithms on micro-controller class of devices. To fit the limited memory storage capability of these tiny platforms, full-precision Deep Neural Networks (DNNs) are compressed by representing their data down to byte and sub-byte formats, in the integer domain. However, the current generation of micro-controller systems can barely cope with the computing requirements of QNNs. This thesis tackles the challenge from many perspectives, presenting solutions both at software and hardware levels, exploiting parallelism, heterogeneity and software programmability to guarantee high flexibility and high energy-performance proportionality. The first contribution, PULP-NN, is an optimized software computing library for QNN inference on parallel ultra-low-power (PULP) clusters of RISC-V processors, showing one order of magnitude improvements in performance and energy efficiency, compared to current State-of-the-Art (SoA) STM32 micro-controller systems (MCUs) based on ARM Cortex-M cores. The second contribution is XpulpNN, a set of RISC-V domain specific instruction set architecture (ISA) extensions to deal with sub-byte integer arithmetic computation. The solution, including the ISA extensions and the micro-architecture to support them, achieves energy efficiency comparable with dedicated DNN accelerators and surpasses the efficiency of SoA ARM Cortex-M based MCUs, such as the low-end STM32M4 and the high-end STM32H7 devices, by up to three orders of magnitude. To overcome the Von Neumann bottleneck while guaranteeing the highest flexibility, the final contribution integrates an Analog In-Memory Computing accelerator into the PULP cluster, creating a fully programmable heterogeneous fabric that demonstrates end-to-end inference capabilities of SoA MobileNetV2 models, showing two orders of magnitude performance improvements over current SoA analog/digital solutions.
Resumo:
Machine learning is widely adopted to decode multi-variate neural time series, including electroencephalographic (EEG) and single-cell recordings. Recent solutions based on deep learning (DL) outperformed traditional decoders by automatically extracting relevant discriminative features from raw or minimally pre-processed signals. Convolutional Neural Networks (CNNs) have been successfully applied to EEG and are the most common DL-based EEG decoders in the state-of-the-art (SOA). However, the current research is affected by some limitations. SOA CNNs for EEG decoding usually exploit deep and heavy structures with the risk of overfitting small datasets, and architectures are often defined empirically. Furthermore, CNNs are mainly validated by designing within-subject decoders. Crucially, the automatically learned features mainly remain unexplored; conversely, interpreting these features may be of great value to use decoders also as analysis tools, highlighting neural signatures underlying the different decoded brain or behavioral states in a data-driven way. Lastly, SOA DL-based algorithms used to decode single-cell recordings rely on more complex, slower to train and less interpretable networks than CNNs, and the use of CNNs with these signals has not been investigated. This PhD research addresses the previous limitations, with reference to P300 and motor decoding from EEG, and motor decoding from single-neuron activity. CNNs were designed light, compact, and interpretable. Moreover, multiple training strategies were adopted, including transfer learning, which could reduce training times promoting the application of CNNs in practice. Furthermore, CNN-based EEG analyses were proposed to study neural features in the spatial, temporal and frequency domains, and proved to better highlight and enhance relevant neural features related to P300 and motor states than canonical EEG analyses. Remarkably, these analyses could be used, in perspective, to design novel EEG biomarkers for neurological or neurodevelopmental disorders. Lastly, CNNs were developed to decode single-neuron activity, providing a better compromise between performance and model complexity.