2 resultados para SEA-ICE COVER

em AMS Tesi di Dottorato - Alm@DL - Università di Bologna


Relevância:

100.00% 100.00%

Publicador:

Resumo:

Sea ice is a fundamental element of global climate system, with numerous impacts on the polar environment. The ongoing drastic changes in the Earth’s sea ice cover highlight the necessity of monitoring the polar regions and systematically evaluating the quality of different numerical products. The main objective of this thesis is to improve our knowledge of the representation of Arctic and Antarctic sea ice using comprehensive global ocean reanalyses and coupled climate models. The dissertation will explore (i) the Antarctic marginal ice zone (MIZ) and pack ice area in the ensemble mean of four global ocean reanalyses called GREP; (ii) historical representation of the Arctic and Antarctic sea ice state in HighResMIP models; (iii) the future evolution of Arctic sea ice in HighResMIP models. Global ocean reanalyses and GREP are found to adequately capture interannual and seasonal variability in both pack ice and MIZ areas at hemispheric and regional scales. The advantage of the ensemble-mean approach is proved as GREP smooths the strengths and weaknesses of single systems and provides the most consistent and reliable estimates. This work is intended to encourage the use of GREP in a wide range of applications. The analysis of sea ice representation in the coupled climate models shows no systematic impact of the increased horizontal resolution. We argue that a few minor improvements in sea ice representation with the enhanced horizontal resolution are presumably not worth the major effort of costly computations. The thesis highlights the critical importance to distinguish the MIZ from consolidated pack ice both for investigating changes in sea ice distribution and evaluating the product’s performance. Considering that the MIZ is predicted to dominate the Arctic sea ice cover, the model physics parameterizations and sea ice rheology might require modifications. The results of the work can be useful for modelling community.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

The most ocean - atmosphere exchanges take place in polar environments due to the low temperatures which favor the absorption processes of atmospheric gases, in particular CO2. For this reason, the alterations of biogeochemical cycles in these areas can have a strong impact on the global climate. With the aim of contributing to the definition of the mechanisms regulating the biogeochemical fluxes we have analyzed the particles collected in the Ross Sea in different years (ROSSMIZE, BIOSESO 1 and 2, ROAVERRS and ABIOCLEAR projects) in two sites (mooring A and B). So it has been developed a more efficient method to prepare sediment trap samples for the analyses. We have also processed satellite data of sea ice, chlorophyll a and diatoms concentration. At both sites, in each year considered, there was a high seasonal and inter-annual variability of biogeochemical fluxes closely correlated with sea ice cover and primary productivity. The comparison between the samples collected at mooring A and B in 2008 highlighted the main differences between these two sites. Particle fluxes at Mooring A, located in a polynia area, are higher than mooring B ones and they happen about a month before. In the mooring B area it has been possible to correlate the particles fluxes to the ice concentration anomalies and with the atmospheric changes in response to El Niño Southern Oscillations. In 1996 and 1999, years subjected to La Niña, the concentrations of sea ice in this area have been less than in 1998, year subjected to El Niño. Inverse correlation was found for 2005 and 2008. In the mooring A area significant differences in mass and biogenic fluxes during 2005 and 2008 has been recorded. This allowed to underline the high variability of lateral advection processes and to connect them to the physical forcing.