3 resultados para SDP

em AMS Tesi di Dottorato - Alm@DL - Università di Bologna


Relevância:

10.00% 10.00%

Publicador:

Resumo:

This thesis adresses the problem of localization, and analyzes its crucial aspects, within the context of cooperative WSNs. The three main issues discussed in the following are: network synchronization, position estimate and tracking. Time synchronization is a fundamental requirement for every network. In this context, a new approach based on the estimation theory is proposed to evaluate the ultimate performance limit in network time synchronization. In particular the lower bound on the variance of the average synchronization error in a fully connected network is derived by taking into account the statistical characterization of the Message Delivering Time (MDT) . Sensor network localization algorithms estimate the locations of sensors with initially unknown location information by using knowledge of the absolute positions of a few sensors and inter-sensor measurements such as distance and bearing measurements. Concerning this issue, i.e. the position estimate problem, two main contributions are given. The first is a new Semidefinite Programming (SDP) framework to analyze and solve the problem of flip-ambiguity that afflicts range-based network localization algorithms with incomplete ranging information. The occurrence of flip-ambiguous nodes and errors due to flip ambiguity is studied, then with this information a new SDP formulation of the localization problem is built. Finally a flip-ambiguity-robust network localization algorithm is derived and its performance is studied by Monte-Carlo simulations. The second contribution in the field of position estimate is about multihop networks. A multihop network is a network with a low degree of connectivity, in which couples of given any nodes, in order to communicate, they have to rely on one or more intermediate nodes (hops). Two new distance-based source localization algorithms, highly robust to distance overestimates, typically present in multihop networks, are presented and studied. The last point of this thesis discuss a new low-complexity tracking algorithm, inspired by the Fano’s sequential decoding algorithm for the position tracking of a user in a WLAN-based indoor localization system.

Relevância:

10.00% 10.00%

Publicador:

Resumo:

The term Congenital Nystagmus (Early Onset Nystagmus or Infantile Nystagmus Syndrome) refers to a pathology characterised by an involuntary movement of the eyes, which often seriously reduces a subject’s vision. Congenital Nystagmus (CN) is a specific kind of nystagmus within the wider classification of infantile nystagmus, which can be best recognized and classified by means of a combination of clinical investigations and motility analysis; in some cases, eye movement recording and analysis are indispensable for diagnosis. However, interpretation of eye movement recordings still lacks of complete reliability; hence new analysis techniques and precise identification of concise parameters directly related to visual acuity are necessary to further support physicians’ decisions. To this aim, an index computed from eye movement recordings and related to the visual acuity of a subject is proposed in this thesis. This estimator is based on two parameters: the time spent by a subject effectively viewing a target (foveation time - Tf) and the standard deviation of eye position (SDp). Moreover, since previous studies have shown that visual acuity largely depends on SDp, a data collection pilot study was also conducted with the purpose of specifically identifying eventual slow rhythmic component in the eye position and to characterise in more detail the SDp. The results are presented in this thesis. In addition, some oculomotor system models are reviewed and a new approach to those models, i.e. the recovery of periodic orbits of the oculomotor system in patients with CN, is tested on real patients data. In conclusion, the results obtained within this research consent to completely and reliably characterise the slow rhythmic component sometimes present in eye position recordings of CN subjects and to better classify the different kinds of CN waveforms. Those findings can successfully support the clinicians in therapy planning and treatment outcome evaluation.

Relevância:

10.00% 10.00%

Publicador:

Resumo:

The availability of a huge amount of source code from code archives and open-source projects opens up the possibility to merge machine learning, programming languages, and software engineering research fields. This area is often referred to as Big Code where programming languages are treated instead of natural languages while different features and patterns of code can be exploited to perform many useful tasks and build supportive tools. Among all the possible applications which can be developed within the area of Big Code, the work presented in this research thesis mainly focuses on two particular tasks: the Programming Language Identification (PLI) and the Software Defect Prediction (SDP) for source codes. Programming language identification is commonly needed in program comprehension and it is usually performed directly by developers. However, when it comes at big scales, such as in widely used archives (GitHub, Software Heritage), automation of this task is desirable. To accomplish this aim, the problem is analyzed from different points of view (text and image-based learning approaches) and different models are created paying particular attention to their scalability. Software defect prediction is a fundamental step in software development for improving quality and assuring the reliability of software products. In the past, defects were searched by manual inspection or using automatic static and dynamic analyzers. Now, the automation of this task can be tackled using learning approaches that can speed up and improve related procedures. Here, two models have been built and analyzed to detect some of the commonest bugs and errors at different code granularity levels (file and method levels). Exploited data and models’ architectures are analyzed and described in detail. Quantitative and qualitative results are reported for both PLI and SDP tasks while differences and similarities concerning other related works are discussed.