2 resultados para Rotated lattices

em AMS Tesi di Dottorato - Alm@DL - Università di Bologna


Relevância:

10.00% 10.00%

Publicador:

Resumo:

The research reported in this manuscript concerns the structural characterization of graphene membranes and single-walled carbon nanotubes (SWCNTs). The experimental investigation was performed using a wide range of transmission electron microscopy (TEM) techniques, from conventional imaging and diffraction, to advanced interferometric methods, like electron holography and Geometric Phase Analysis (GPA), using a low-voltage optical set-up, to reduce radiation damage in the samples. Electron holography was used to successfully measure the mean electrostatic potential of an isolated SWCNT and that of a mono-atomically thin graphene crystal. The high accuracy achieved in the phase determination, made it possible to measure, for the first time, the valence-charge redistribution induced by the lattice curvature in an individual SWCNT. A novel methodology for the 3D reconstruction of the waviness of a 2D crystal membrane has been developed. Unlike other available TEM reconstruction techniques, like tomography, this new one requires processing of just a single HREM micrograph. The modulations of the inter-planar distances in the HREM image are measured using Geometric Phase Analysis, and used to recover the waviness of the crystal. The method was applied to the case of a folded FGC, and a height variation of 0.8 nm of the surface was successfully determined with nanometric lateral resolution. The adhesion of SWCNTs to the surface of graphene was studied, mixing shortened SWCNTs of different chiralities and FGC membranes. The spontaneous atomic match of the two lattices was directly imaged using HREM, and we found that graphene membranes act as tangential nano-sieves, preferentially grafting achiral tubes to their surface.

Relevância:

10.00% 10.00%

Publicador:

Resumo:

The upgrade of the CERN accelerator complex has been planned in order to further increase the LHC performances in exploring new physics frontiers. One of the main limitations to the upgrade is represented by the collective instabilities. These are intensity dependent phenomena triggered by electromagnetic fields excited by the interaction of the beam with its surrounding. These fields are represented via wake fields in time domain or impedances in frequency domain. Impedances are usually studied assuming ultrarelativistic bunches while we mainly explored low and medium energy regimes in the LHC injector chain. In a non-ultrarelativistic framework we carried out a complete study of the impedance structure of the PSB which accelerates proton bunches up to 1.4 GeV. We measured the imaginary part of the impedance which creates betatron tune shift. We introduced a parabolic bunch model which together with dedicated measurements allowed us to point to the resistive wall impedance as the source of one of the main PSB instability. These results are particularly useful for the design of efficient transverse instability dampers. We developed a macroparticle code to study the effect of the space charge on intensity dependent instabilities. Carrying out the analysis of the bunch modes we proved that the damping effects caused by the space charge, which has been modelled with semi-analytical method and using symplectic high order schemes, can increase the bunch intensity threshold. Numerical libraries have been also developed in order to study, via numerical simulations of the bunches, the impedance of the whole CERN accelerator complex. On a different note, the experiment CNGS at CERN, requires high-intensity beams. We calculated the interpolating Hamiltonian of the beam for highly non-linear lattices. These calculations provide the ground for theoretical and numerical studies aiming to improve the CNGS beam extraction from the PS to the SPS.