2 resultados para Ross Ice Shelf

em AMS Tesi di Dottorato - Alm@DL - Università di Bologna


Relevância:

80.00% 80.00%

Publicador:

Resumo:

Satellite SAR (Synthetic Aperture Radar) interferometry represents a valid technique for digital elevation models (DEM) generation, providing metric accuracy even without ancillary data of good quality. Depending on the situations the interferometric phase could be interpreted both as topography and as a displacement eventually occurred between the two acquisitions. Once that these two components have been separated it is possible to produce a DEM from the first one or a displacement map from the second one. InSAR DEM (Digital Elevation Model) generation in the cryosphere is not a straightforward operation because almost every interferometric pair contains also a displacement component, which, even if small, when interpreted as topography during the phase to height conversion step could introduce huge errors in the final product. Considering a glacier, assuming the linearity of its velocity flux, it is therefore necessary to differentiate at least two pairs in order to isolate the topographic residue only. In case of an ice shelf the displacement component in the interferometric phase is determined not only by the flux of the glacier but also by the different heights of the two tides. As a matter of fact even if the two scenes of the interferometric pair are acquired at the same time of the day only the main terms of the tide disappear in the interferogram, while the other ones, smaller, do not elide themselves completely and so correspond to displacement fringes. Allowing for the availability of tidal gauges (or as an alternative of an accurate tidal model) it is possible to calculate a tidal correction to be applied to the differential interferogram. It is important to be aware that the tidal correction is applicable only knowing the position of the grounding line, which is often a controversial matter. In this thesis it is described the methodology applied for the generation of the DEM of the Drygalski ice tongue in Northern Victoria Land, Antarctica. The displacement has been determined both in an interferometric way and considering the coregistration offsets of the two scenes. A particular attention has been devoted to investigate the importance of the role of some parameters, such as timing annotations and orbits reliability. Results have been validated in a GIS environment by comparison with GPS displacement vectors (displacement map and InSAR DEM) and ICEsat GLAS points (InSAR DEM).

Relevância:

30.00% 30.00%

Publicador:

Resumo:

The most ocean - atmosphere exchanges take place in polar environments due to the low temperatures which favor the absorption processes of atmospheric gases, in particular CO2. For this reason, the alterations of biogeochemical cycles in these areas can have a strong impact on the global climate. With the aim of contributing to the definition of the mechanisms regulating the biogeochemical fluxes we have analyzed the particles collected in the Ross Sea in different years (ROSSMIZE, BIOSESO 1 and 2, ROAVERRS and ABIOCLEAR projects) in two sites (mooring A and B). So it has been developed a more efficient method to prepare sediment trap samples for the analyses. We have also processed satellite data of sea ice, chlorophyll a and diatoms concentration. At both sites, in each year considered, there was a high seasonal and inter-annual variability of biogeochemical fluxes closely correlated with sea ice cover and primary productivity. The comparison between the samples collected at mooring A and B in 2008 highlighted the main differences between these two sites. Particle fluxes at Mooring A, located in a polynia area, are higher than mooring B ones and they happen about a month before. In the mooring B area it has been possible to correlate the particles fluxes to the ice concentration anomalies and with the atmospheric changes in response to El Niño Southern Oscillations. In 1996 and 1999, years subjected to La Niña, the concentrations of sea ice in this area have been less than in 1998, year subjected to El Niño. Inverse correlation was found for 2005 and 2008. In the mooring A area significant differences in mass and biogenic fluxes during 2005 and 2008 has been recorded. This allowed to underline the high variability of lateral advection processes and to connect them to the physical forcing.