3 resultados para Risk measures

em AMS Tesi di Dottorato - Alm@DL - Università di Bologna


Relevância:

30.00% 30.00%

Publicador:

Resumo:

In Performance-Based Earthquake Engineering (PBEE), evaluating the seismic performance (or seismic risk) of a structure at a designed site has gained major attention, especially in the past decade. One of the objectives in PBEE is to quantify the seismic reliability of a structure (due to the future random earthquakes) at a site. For that purpose, Probabilistic Seismic Demand Analysis (PSDA) is utilized as a tool to estimate the Mean Annual Frequency (MAF) of exceeding a specified value of a structural Engineering Demand Parameter (EDP). This dissertation focuses mainly on applying an average of a certain number of spectral acceleration ordinates in a certain interval of periods, Sa,avg (T1,…,Tn), as scalar ground motion Intensity Measure (IM) when assessing the seismic performance of inelastic structures. Since the interval of periods where computing Sa,avg is related to the more or less influence of higher vibration modes on the inelastic response, it is appropriate to speak about improved IMs. The results using these improved IMs are compared with a conventional elastic-based scalar IMs (e.g., pseudo spectral acceleration, Sa ( T(¹)), or peak ground acceleration, PGA) and the advanced inelastic-based scalar IM (i.e., inelastic spectral displacement, Sdi). The advantages of applying improved IMs are: (i ) "computability" of the seismic hazard according to traditional Probabilistic Seismic Hazard Analysis (PSHA), because ground motion prediction models are already available for Sa (Ti), and hence it is possibile to employ existing models to assess hazard in terms of Sa,avg, and (ii ) "efficiency" or smaller variability of structural response, which was minimized to assess the optimal range to compute Sa,avg. More work is needed to assess also "sufficiency" and "scaling robustness" desirable properties, which are disregarded in this dissertation. However, for ordinary records (i.e., with no pulse like effects), using the improved IMs is found to be more accurate than using the elastic- and inelastic-based IMs. For structural demands that are dominated by the first mode of vibration, using Sa,avg can be negligible relative to the conventionally-used Sa (T(¹)) and the advanced Sdi. For structural demands with sign.cant higher-mode contribution, an improved scalar IM that incorporates higher modes needs to be utilized. In order to fully understand the influence of the IM on the seismis risk, a simplified closed-form expression for the probability of exceeding a limit state capacity was chosen as a reliability measure under seismic excitations and implemented for Reinforced Concrete (RC) frame structures. This closed-form expression is partuclarly useful for seismic assessment and design of structures, taking into account the uncertainty in the generic variables, structural "demand" and "capacity" as well as the uncertainty in seismic excitations. The assumed framework employs nonlinear Incremental Dynamic Analysis (IDA) procedures in order to estimate variability in the response of the structure (demand) to seismic excitations, conditioned to IM. The estimation of the seismic risk using the simplified closed-form expression is affected by IM, because the final seismic risk is not constant, but with the same order of magnitude. Possible reasons concern the non-linear model assumed, or the insufficiency of the selected IM. Since it is impossibile to state what is the "real" probability of exceeding a limit state looking the total risk, the only way is represented by the optimization of the desirable properties of an IM.

Relevância:

30.00% 30.00%

Publicador:

Resumo:

The research field of the Thesis is the evaluation of motor variability and the analysis of motor stability for the assessment of fall risk. Since many falls occur during walking, a better understanding of motor stability could lead to the definition of a reliable fall risk index aiming at measuring and assessing the risk of fall in the elderly, in the attempt to prevent traumatic events. Several motor variability and stability measures are proposed in the literature, but still a proper methodological characterization is lacking. Moreover, the relationship between many of these measures and fall history or fall risk is still unknown, or not completely clear. The aim of this thesis is hence to: i) analyze the influence of experimental implementation parameters on variability/stability measures and understand how variations in these parameters affect the outputs; ii) assess the relationship between variability/stability measures and long- short-term fall history. Several implementation issues have been addressed. Following the need for a methodological standardization of gait variability/stability measures, highlighted in particular for orbital stability analysis through a systematic review, general indications about implementation of orbital stability analysis have been showed, together with an analysis of the number of strides and the test-retest reliability of several variability/stability numbers. Indications about the influence of directional changes on measures have been provided. The association between measures and long/short-term fall history has also been assessed. Of all the analyzed variability/stability measures, Multiscale entropy and Recurrence quantification analysis demonstrated particularly good results in terms of reliability, applicability and association with fall history. Therefore, these measures should be taken in consideration for the definition of a fall risk index.

Relevância:

30.00% 30.00%

Publicador:

Resumo:

Tractor rollover represent a primary cause of death or serious injury in agriculture and despite the mandatory Roll-Over Protective Structures (ROPS), that reduced the number of injuries, tractor accidents are still of great concern. Because of their versatility and wide use many studies on safety are concerned with the stability of tractors, but they often prefer controlled tests or laboratory tests. The evaluation of tractors working in field, instead, is a very complex issue because the rollover could be influenced by the interaction among operator, tractor and environment. Recent studies are oriented towards the evaluation of the actual working conditions developing prototypes for driver assistance and data acquisition. Currently these devices are produced and sold by manufacturers. A warning device was assessed in this study with the aim to evaluate its performance and to collect data on different variables influencing the dynamics of tractors in field by monitoring continuously the working conditions of tractors operating at the experimental farm of the Bologna University. The device consists of accelerometers, gyroscope, GSM/GPRS, GPS for geo-referencing and a transceiver for the automatic recognition of tractor-connected equipment. A microprocessor processes data and provides information, through a dedicated algorithm requiring data on the geometry of the tested tractor, on the level of risk for the operator in terms of probable loss of stability and suggests corrective measures to reduce the potential instability of the tractor.