17 resultados para Risk Evaluation
em AMS Tesi di Dottorato - Alm@DL - Università di Bologna
Resumo:
Dysfunction of Autonomic Nervous System (ANS) is a typical feature of chronic heart failure and other cardiovascular disease. As a simple non-invasive technology, heart rate variability (HRV) analysis provides reliable information on autonomic modulation of heart rate. The aim of this thesis was to research and develop automatic methods based on ANS assessment for evaluation of risk in cardiac patients. Several features selection and machine learning algorithms have been combined to achieve the goals. Automatic assessment of disease severity in Congestive Heart Failure (CHF) patients: a completely automatic method, based on long-term HRV was proposed in order to automatically assess the severity of CHF, achieving a sensitivity rate of 93% and a specificity rate of 64% in discriminating severe versus mild patients. Automatic identification of hypertensive patients at high risk of vascular events: a completely automatic system was proposed in order to identify hypertensive patients at higher risk to develop vascular events in the 12 months following the electrocardiographic recordings, achieving a sensitivity rate of 71% and a specificity rate of 86% in identifying high-risk subjects among hypertensive patients. Automatic identification of hypertensive patients with history of fall: it was explored whether an automatic identification of fallers among hypertensive patients based on HRV was feasible. The results obtained in this thesis could have implications both in clinical practice and in clinical research. The system has been designed and developed in order to be clinically feasible. Moreover, since 5-minute ECG recording is inexpensive, easy to assess, and non-invasive, future research will focus on the clinical applicability of the system as a screening tool in non-specialized ambulatories, in order to identify high-risk patients to be shortlisted for more complex investigations.
From fall-risk assessment to fall detection: inertial sensors in the clinical routine and daily life
Resumo:
Falls are caused by complex interaction between multiple risk factors which may be modified by age, disease and environment. A variety of methods and tools for fall risk assessment have been proposed, but none of which is universally accepted. Existing tools are generally not capable of providing a quantitative predictive assessment of fall risk. The need for objective, cost-effective and clinically applicable methods would enable quantitative assessment of fall risk on a subject-specific basis. Tracking objectively falls risk could provide timely feedback about the effectiveness of administered interventions enabling intervention strategies to be modified or changed if found to be ineffective. Moreover, some of the fundamental factors leading to falls and what actually happens during a fall remain unclear. Objectively documented and measured falls are needed to improve knowledge of fall in order to develop more effective prevention strategies and prolong independent living. In the last decade, several research groups have developed sensor-based automatic or semi-automatic fall risk assessment tools using wearable inertial sensors. This approach may also serve to detect falls. At the moment, i) several fall-risk assessment studies based on inertial sensors, even if promising, lack of a biomechanical model-based approach which could provide accurate and more detailed measurements of interests (e.g., joint moments, forces) and ii) the number of published real-world fall data of older people in a real-world environment is minimal since most authors have used simulations with healthy volunteers as a surrogate for real-world falls. With these limitations in mind, this thesis aims i) to suggest a novel method for the kinematics and dynamics evaluation of functional motor tasks, often used in clinics for the fall-risk evaluation, through a body sensor network and a biomechanical approach and ii) to define the guidelines for a fall detection algorithm based on a real-world fall database availability.
Resumo:
In questo lavoro di tesi si è elaborato un quadro di riferimento per l’utilizzo combinato di due metodologie di valutazione di impatti LCA e RA, per tecnologie emergenti. L’originalità dello studio sta nell’aver proposto e anche applicato il quadro di riferimento ad un caso studio, in particolare ad una tecnologia innovativa di refrigerazione, basata su nanofluidi (NF), sviluppata da partner del progetto Europeo Nanohex che hanno collaborato all’elaborazione degli studi soprattutto per quanto riguarda l’inventario dei dati necessari. La complessità dello studio è da ritrovare tanto nella difficile integrazione di due metodologie nate per scopi differenti e strutturate per assolvere a quegli scopi, quanto nel settore di applicazione che seppur in forte espansione ha delle forti lacune di informazioni circa processi di produzione e comportamento delle sostanze. L’applicazione è stata effettuata sulla produzione di nanofluido (NF) di allumina secondo due vie produttive (single-stage e two-stage) per valutare e confrontare gli impatti per la salute umana e l’ambiente. Occorre specificare che il LCA è stato quantitativo ma non ha considerato gli impatti dei NM nelle categorie di tossicità. Per quanto concerne il RA è stato sviluppato uno studio di tipo qualitativo, a causa della problematica di carenza di parametri tossicologici e di esposizione su citata avente come focus la categoria dei lavoratori, pertanto è stata fatta l’assunzione che i rilasci in ambiente durante la fase di produzione sono trascurabili. Per il RA qualitativo è stato utilizzato un SW specifico, lo Stoffenmanger-Nano che rende possibile la prioritizzazione dei rischi associati ad inalazione in ambiente di lavoro. Il quadro di riferimento prevede una procedura articolata in quattro fasi: DEFINIZIONE SISTEMA TECNOLOGICO, RACCOLTA DATI, VALUTAZIONE DEL RISCHIO E QUANTIFICAZIONE DEGLI IMPATTI, INTERPRETAZIONE.
Resumo:
This thesis evaluated in vivo and in vitro enamel permeability in different physiological and clinical conditions by means of SEM inspection of replicas of enamel surface obtained from polyvinyl siloxane impressions subsequently later cast in polyether impression ma-terial. This technique, not invasive and risk-free, allows the evaluation of fluid outflow from enamel surface and is able to detect the presence of small quantities of fluid, visu-alized as droplets. Fluid outflow on enamel surface represents enamel permeability. This property has a paramount importance in enamel physiolgy and pathology although its ef-fective role in adhesion, caries pathogenesis and prevention today is still not fully under-stood. The aim of the studies proposed was to evaluate enamel permeability changes in differ-ent conditions and to correlate the findings with the actual knowledge about enamel physiology, caries pathogenesis, fluoride and etchinhg treatments. To obtain confirmed data the replica technique has been supported by others specific techniques such as Ra-man and IR spectroscopy and EDX analysis. The first study carried out visualized fluid movement through dental enamel in vivo con-firmed that enamel is a permeable substrate and demonstrated that age and enamel per-meability are closely related. Examined samples from subjects of different ages showed a decreasing number and size of droplets with increasing age: freshly erupted permanent teeth showed many droplets covering the entire enamel surface. Droplets in permanent teeth were prominent along enamel perikymata. These results obtained through SEM inspection of replicas allowed innovative remarks in enamel physiology. An analogous testing has been developed for evaluation of enamel permeability in primary enamel. The results of this second study showed that primary enamel revealed a substantive permeability with droplets covering the entire enamel sur-face without any specific localization accordingly with histological features, without changes during aging signs of post-eruptive maturation. These results confirmed clinical data that showed a higher caries susceptibility for primary enamel and suggested a strong relationship between this one and enamel permeability. Topical fluoride application represents the gold standard for caries prevention although the mechanism of cariostatic effect of fluoride still needs to be clarified. The effects of topical fluoride application on enamel permeability were evaluated. Particularly two dif-ferent treatments (NaF and APF), with different pH, were examined. The major product of topical fluoride application was the deposition of CaF2-like globules. Replicas inspec-tion before and after both treatments at different times intervals and after specific addi-tional clinical interventions showed that such globule formed in vivo could be removed by professional toothbrushing, sonically and chemically by KOH. The results obtained in relation to enamel permeability showed that fluoride treatments temporarily reduced enamel water permeability when CaF2-like globules were removed. The in vivo perma-nence of decreased enamel permeability after CaF2 globules removal has been demon-strated for 1 h for NaF treated teeth and for at least 7 days for APF treated teeth. Important clinical consideration moved from these results. In fact the caries-preventing action of fluoride application may be due, in part, to its ability to decrease enamel water permeability and CaF2 like-globules seem to be indirectly involved in enamel protection over time maintaining low permeability. Others results obtained by metallographic microscope and SEM/EDX analyses of or-thodontic resins fluoride releasing and not demonstrated the relevance of topical fluo-ride application in decreasing the demineralization marks and modifying the chemical composition of the enamel in the treated area. These data obtained in both the experiments confirmed the efficacy of fluoride in caries prevention and contribute to clarify its mechanism of action. Adhesive dentistry is the gold standard for caries treatment and tooth rehabilitation and is founded on important chemical and physical principles involving both enamel and dentine substrates. Particularly acid etching of dental enamel enamel has usually employed in bonding pro-cedures increasing microscopic roughness. Different acids have been tested in the litera-ture suggesting several etching procedures. The acid-induced structural transformations in enamel after different etching treatments by means of Raman and IR spectroscopy analysis were evaluated and these findings were correlated with enamel permeability. Conventional etching with 37% phosphoric acid gel (H3PO4) for 30 s and etching with 15 % HCl for 120 s were investigated. Raman and IR spectroscopy showed that the treatment with both hydrochloric and phosphoric acids induced a decrease in the carbonate content of the enamel apatite. At the same time, both acids induced the formation of HPO42- ions. After H3PO4 treatment the bands due to the organic component of enamel decreased in intensity, while in-creased after HCl treatment. Replicas of H3PO4 treated enamel showed a strongly reduced permeability while replicas of HCl 15% treated samples showed a maintained permeability. A decrease of the enamel organic component, as resulted after H3PO4 treatment, involves a decrease in enamel permeability, while the increase of the organic matter (achieved by HCl treat-ment) still maintains enamel permeability. These results suggested a correlation between the amount of the organic matter, enamel permeability and caries. The results of the different studies carried out in this thesis contributed to clarify and improve the knowledge about enamel properties with important rebounds in theoretical and clinical aspects of Dentistry.
Resumo:
This PhD thesis discusses the rationale for design and use of synthetic oligosaccharides for the development of glycoconjugate vaccines and the role of physicochemical methods in the characterization of these vaccines. The study concerns two infectious diseases that represent a serious problem for the national healthcare programs: human immunodeficiency virus (HIV) and Group A Streptococcus (GAS) infections. Both pathogens possess distinctive carbohydrate structures that have been described as suitable targets for the vaccine design. The Group A Streptococcus cell membrane polysaccharide (GAS-PS) is an attractive vaccine antigen candidate based on its conserved, constant expression pattern and the ability to confer immunoprotection in a relevant mouse model. Analysis of the immunogenic response within at-risk populations suggests an inverse correlation between high anti-GAS-PS antibody titres and GAS infection cases. Recent studies show that a chemically synthesized core polysaccharide-based antigen may represent an antigenic structural determinant of the large polysaccharide. Based on GAS-PS structural analysis, the study evaluates the potential to exploit a synthetic design approach to GAS vaccine development and compares the efficiency of synthetic antigens with the long isolated GAS polysaccharide. Synthetic GAS-PS structural analogues were specifically designed and generated to explore the impact of antigen length and terminal residue composition. For the HIV-1 glycoantigens, the dense glycan shield on the surface of the envelope protein gp120 was chosen as a target. This shield masks conserved protein epitopes and facilitates virus spread via binding to glycan receptors on susceptible host cells. The broadly neutralizing monoclonal antibody 2G12 binds a cluster of high-mannose oligosaccharides on the gp120 subunit of HIV-1 Env protein. This oligomannose epitope has been a subject to the synthetic vaccine development. The cluster nature of the 2G12 epitope suggested that multivalent antigen presentation was important to develop a carbohydrate based vaccine candidate. I describe the development of neoglycoconjugates displaying clustered HIV-1 related oligomannose carbohydrates and their immunogenic properties.
Resumo:
Objective: To investigate the prognostic significance of ST-segment elevation (STE) in aVR associated with ST-segment depression (STD) in other leads in patients with non-STE acute coronary syndrome (NSTE-ACS). Background: In NSTE-ACS patients, STD has been extensively associated with severe coronary lesions and poor outcomes. The prognostic role of STE in aVR is uncertain. Methods: We enrolled 888 consecutive patients with NSTE-ACS. They were divided into two groups according to the presence or not on admission ECG of aVR STE≥ 1mm and STD (defined as high risk ECG pattern). The primary and secondary endpoints were: in-hospital cardiovascular (CV) death and the rate of culprit left main disease (LMD). Results: Patients with high risk ECG pattern (n=121) disclosed a worse clinical profile compared to patients (n=575) without [median GRACE (Global-Registry-of-Acute-Coronary-Events) risk score =142 vs. 182, respectively]. A total of 75% of patients underwent coronary angiography. The rate of in-hospital CV death was 3.9%. On multivariable analysis patients who had the high risk ECG pattern showed an increased risk of CV death (OR=2.88, 95%CI 1.05-7.88) and culprit LMD (OR=4.67,95%CI 1.86-11.74) compared to patients who had not. The prognostic significance of the high risk ECG pattern was maintained even after adjustment for the GRACE risk score (OR = 2.28, 95%CI:1.06-4.93 and OR = 4.13, 95%CI:2.13-8.01, for primary and secondary endpoint, respectively). Conclusions: STE in aVR associated with STD in other leads predicts in-hospital CV death and culprit LMD. This pattern may add prognostic information in patients with NSTE-ACS on top of recommended scoring system.
Resumo:
Shellfish are filter-feeding organisms that can accumulate many bacteria and viruses. Considering that depuration procedures are not effective in removal of certain microorganisms, shellfish-borne diseases are frequent in many parts of the world, and their control must rely primarily on investigation of prevalence of human pathogens in shellfish and water environment. However, the diffusion of enteric viruses and Vibrio bacteria is not known in many geographical areas, for example in Sardinia, Italy. A survey aimed at investigating the prevalence of Norovirus (NoV), hepatitis A virus (HAV), V. parahaemolyticus, V. cholerae and V. vulnificus was carried out, analyzing both local and imported purified, non-purified and retail shellfish from North Italy and Sardinia. Shellfish from both areas were found contaminated by NoVs, HAV and Vibrio, including retail and purified animals. Molecular analysis evidenced different NoV genogroups and genotypes, including bovine NoVs, as well as pathogenic Vibrio strains, underlining the risk for shellfish consumers. However, also other approaches are needed to control the diffusion of shellfish-borne diseases. It was originally thought that enteric viruses are passively accumulated by shellfish. Recently, it was proven that NoVs bind to specific carbohydrate ligands in oysters, and various NoV strains are characterized by a different bioaccumulation pattern. To deepen the knowledge on this argument, a study was carried out, analyzing bioaccumulation of up to 8 different NoV strains in four different species of shellfish. Different bioaccumulation patterns were observed for each shellfish species and NoV strain used, potentially important in setting up effective shellfish purification protocols. Finally, a novel study of evaluation of viral contamination in shellfish from the French Atlantic coast was carried out following the passage of Xynthia tempest over Western Europe which caused massive destruction. Different enteric viruses were found over a one month period, evidencing the potential of these events of contaminating shellfish.
Resumo:
The research field of the Thesis is the evaluation of motor variability and the analysis of motor stability for the assessment of fall risk. Since many falls occur during walking, a better understanding of motor stability could lead to the definition of a reliable fall risk index aiming at measuring and assessing the risk of fall in the elderly, in the attempt to prevent traumatic events. Several motor variability and stability measures are proposed in the literature, but still a proper methodological characterization is lacking. Moreover, the relationship between many of these measures and fall history or fall risk is still unknown, or not completely clear. The aim of this thesis is hence to: i) analyze the influence of experimental implementation parameters on variability/stability measures and understand how variations in these parameters affect the outputs; ii) assess the relationship between variability/stability measures and long- short-term fall history. Several implementation issues have been addressed. Following the need for a methodological standardization of gait variability/stability measures, highlighted in particular for orbital stability analysis through a systematic review, general indications about implementation of orbital stability analysis have been showed, together with an analysis of the number of strides and the test-retest reliability of several variability/stability numbers. Indications about the influence of directional changes on measures have been provided. The association between measures and long/short-term fall history has also been assessed. Of all the analyzed variability/stability measures, Multiscale entropy and Recurrence quantification analysis demonstrated particularly good results in terms of reliability, applicability and association with fall history. Therefore, these measures should be taken in consideration for the definition of a fall risk index.
Resumo:
In this study, some important aspects of the relationship between honey bees (Apis mellifera L.) and pesticides have been investigated. In the first part of the research, the effects of the exposure of honey bees to neonicotinoids and fipronil contaminated dusts were analyzed. In fact, considerable amounts of these pesticides, employed for maize seed dressing treatments, may be dispersed during the sowing operations, thus representing a way of intoxication for honey bees. In particular, a specific way of exposure to this pesticides formulation, the indirect contact, was taken into account. To this aim, we conducted different experimentations, in laboratory, in semi-field and in open field conditions in order to assess the effects on mortality, foraging behaviour, colony development and capacity of orientation. The real dispersal of contaminated dusts was previously assessed in specific filed trials. In the second part, the impact of various pesticides (chemical and biological) on honey bee biochemical-physiological changes, was evaluated. Different ways and durations of exposure to the tested products were also employed. Three experimentations were performed, combining Bt spores and deltamethrin, Bt spores and fipronil, difenoconazole and deltamethrin. Several important enzymes (GST, ALP, SOD, CAT, G6PDH, GAPDH) were selected in order to test the pesticides induced variations in their activity. In particular, these enzymes are involved in different pathways of detoxification, oxidative stress defence and energetic metabolism. The results showed a significant effect on mortality of neonicotinoids and fipronil contaminated dusts, both in laboratory and in semi-field trials. However, no effects were evidenced in honey bees orientation capacity. The analysis of different biochemical indicators highlighted some interesting physiological variations that can be linked to the pesticide exposure. We therefore stress the attention on the possibility of using such a methodology as a novel toxicity endpoint in environmental risk assessment.
Resumo:
Tractor rollover represent a primary cause of death or serious injury in agriculture and despite the mandatory Roll-Over Protective Structures (ROPS), that reduced the number of injuries, tractor accidents are still of great concern. Because of their versatility and wide use many studies on safety are concerned with the stability of tractors, but they often prefer controlled tests or laboratory tests. The evaluation of tractors working in field, instead, is a very complex issue because the rollover could be influenced by the interaction among operator, tractor and environment. Recent studies are oriented towards the evaluation of the actual working conditions developing prototypes for driver assistance and data acquisition. Currently these devices are produced and sold by manufacturers. A warning device was assessed in this study with the aim to evaluate its performance and to collect data on different variables influencing the dynamics of tractors in field by monitoring continuously the working conditions of tractors operating at the experimental farm of the Bologna University. The device consists of accelerometers, gyroscope, GSM/GPRS, GPS for geo-referencing and a transceiver for the automatic recognition of tractor-connected equipment. A microprocessor processes data and provides information, through a dedicated algorithm requiring data on the geometry of the tested tractor, on the level of risk for the operator in terms of probable loss of stability and suggests corrective measures to reduce the potential instability of the tractor.
Resumo:
Background. A sizable group of patients with symptomatic aortic stenosis (AS) can undergo neither surgical aortic valve replacement (AVR) nor transcatheter aortic valve implantation (TAVI) because of clinical contraindications. The aim of this study was to assess the potential role of balloon aortic valvuloplasty (BAV) as a “bridge-to-decision” in selected patients with severe AS and potentially reversible contraindications to definitive treatment. Methods. We retrospectively enrolled 645 patients who underwent first BAV at our Institution between July 2007 and December 2012. Of these, the 202 patients (31.2%) who underwent BAV as bridge-to-decision (BTD) requiring clinical re-evaluation represented our study population. BTD patients were further subdivided in 5 groups: low left ventricular ejection fraction; mitral regurgitation grade ≥3; frailty; hemodynamic instability; comorbidity. The main objective of the study was to evaluate how BAV influenced the final treatment strategy in the whole BTD group and in its single specific subgroups. Results. Mean logistic EuroSCORE was 23.5±15.3%, mean age was 81±7 years. Mean transaortic gradient decreased from 47±17 mmHg to 33±14 mmHg. Of the 193 patients with BTD-BAV who received a second heart team evaluation, 72.5% were finally deemed eligible for definitive treatment (25.4%for AVR; 47.2% for TAVI): respectively, 96.7% of patients with left ventricular ejection fraction recovery; 70.5% of patients with mitral regurgitation reduction; 75.7% of patients who underwent BAV in clinical hemodynamic instability; 69.2% of frail patients and 68% of patients who presented relevant comorbidities. 27.5% of the study population was deemed ineligible for definitive treatment and treated with standard therapy/repeated BAV. In-hospital mortality was 4.5%, cerebrovascular accident occurred in 1% and overall vascular complications were 4% (0.5% major; 3.5% minor). Conclusions. Balloon aortic valvuloplasty should be considered as bridge-to-decision in high-risk patients with severe aortic stenosis who cannot be immediate candidates for definitive percutaneous or surgical treatment.
Resumo:
Coastal flooding poses serious threats to coastal areas around the world, billions of dollars in damage to property and infrastructure, and threatens the lives of millions of people. Therefore, disaster management and risk assessment aims at detecting vulnerability and capacities in order to reduce coastal flood disaster risk. In particular, non-specialized researchers, emergency management personnel, and land use planners require an accurate, inexpensive method to determine and map risk associated with storm surge events and long-term sea level rise associated with climate change. This study contributes to the spatially evaluation and mapping of social-economic-environmental vulnerability and risk at sub-national scale through the development of appropriate tools and methods successfully embedded in a Web-GIS Decision Support System. A new set of raster-based models were studied and developed in order to be easily implemented in the Web-GIS framework with the purpose to quickly assess and map flood hazards characteristics, damage and vulnerability in a Multi-criteria approach. The Web-GIS DSS is developed recurring to open source software and programming language and its main peculiarity is to be available and usable by coastal managers and land use planners without requiring high scientific background in hydraulic engineering. The effectiveness of the system in the coastal risk assessment is evaluated trough its application to a real case study.
Resumo:
Fusarium head blight (FHB) is a worldwide cereal disease caused by a complex of Fusarium species resulting in high yield losses, reduction in quality and mycotoxin contamination of grain. A shift in Fusarium head blight community has been observed worldwide. The present work aimed to analyze the evolution of Italian FHB community focusing the attention on species considered “secondary” in the past years such as members of Fusarium tricinctum species complex (FTSC) and F. proliferatum. The first goal of the study was to analyze the fungal community associated with Italian durum wheat in two different years. F. poae, F. avenaceum and F. proliferatum were the main species detected on Italian durum kernels. A variable mycotoxins contamination was observed in the analyzed samples. Considering, the increased incidence of F. avenaceum and other members of FTSC in Italian FHB, the second aim was to investigate genetic diversity among the FTSC and estimate the mycotoxin risk related to these species. Phylogenetic analyses revealed that F. avenaceum (FTSC 4) was the most common species in Italy, followed by an unnamed Fusarium sp., F. tricinctum and F. acuminatum. In addition to these four phylospecies, five other F. tricinctum clade species were sampled. These included strains of four newly discovered species (Fusarium spp. FTSC 11, 13, 14, 15) and F. iranicum (FTSC 6). Most isolates tested for mycotoxin production on rice cultures were able to produce quantitative levels of enniatins and moniliformin. In addition, a preliminary study was conducted to evaluate the ability of a selected F. proliferatum isolate to produce fumonisins on wheat in open field and under natural climatic conditions. The three analogues (FB1, FB2 and FB3) were quantified by HPLC-FLD analysis on kernels, chaff and rachis. Fumonisins were detected in all the three investigated fractions without significant differences.
Resumo:
Follicular lymphoma (FL) is a B cell neoplasm, composed of follicle center cells, that accounts for about 20% of all lymphomas, with the highest incidence reported in the USA and western Europe. FL has been considered a virtually incurable disease, with a high response rate alternated with frequent post-therapy relapses or progression towards more aggressive lymphomas. Due to the extreme variability in outcome, many efforts were made to predict prognosis, the need for therapy, and the likelihood of evolution. Even if clinical scores turned out to be robust and easy to use in clinical practice for patient risk stratification, marked heterogeneity in outcome remains within each group and further insights into the biology of FL are needed. The genome-wide approach underscored the pivotal role of the FL microenvironment in the evolution of the disease. In 2004, a landmark study by Dave et al. first described the microenvironment impact on tumor biology. By gene expression profiling they identified two different immune response signatures, involving T-cells and macrophages which seemed to independently predict FL outcome, but their exact is not completely understood and different studies led to variable results. Subsequently, many workgroups identified in amount and distribution pattern of these different cell subsets features which can impact prognosis, this leading to hypothesizing the use of these parameters as surrogate markers of the molecular signature. We aimed to assess the possible contributions of micro-environmental components to FL transformation or progression, its relevance as a prognostic/predictive tool, and its potential role as an innovative therapeutic target. We used immunohistochemical techniques, focusing specifically on macrophages and T-cells subsets, and then found correlations between the presence, proportions, and distribution of these reactive cells and the clinical outcomes leading to the future development of a reliable tool for upfront risk stratification of patients affected by FL.
Resumo:
The topic of seismic loss assessment not only incorporates many aspects of the earthquake engineering, but also entails social factors, public policies and business interests. Because of its multidisciplinary character, this process may be complex to challenge, and sound discouraging to neophytes. In this context, there is an increasing need of deriving simplified methodologies to streamline the process and provide tools for decision-makers and practitioners. This dissertation investigates different possible applications both in the area of modelling of seismic losses, both in the analysis of observational seismic data. Regarding the first topic, the PRESSAFE-disp method is proposed for the fast evaluation of the fragility curves of precast reinforced-concrete (RC) structures. Hence, a direct application of the method to the productive area of San Felice is studied to assess the number of collapses under a specific seismic scenario. In particular, with reference to the 2012 events, two large-scale stochastic models are outlined. The outcomes of the framework are promising, in good agreement with the observed damage scenario. Furthermore, a simplified displacement-based methodology is outlined to estimate different loss performance metrics for the decision-making phase of the seismic retrofit of a single RC building. The aim is to evaluate the seismic performance of different retrofit options, for a comparative analysis of their effectiveness and the convenience. Finally, a contribution to the analysis of the observational data is presented in the last part of the dissertation. A specific database of losses of precast RC buildings damaged by the 2012 Earthquake is created. A statistical analysis is performed, allowing deriving several consequence functions. The outcomes presented may be implemented in probabilistic seismic risk assessments to forecast the losses at the large scale. Furthermore, these may be adopted to establish retrofit policies to prevent and reduce the consequences of future earthquakes in industrial areas.