4 resultados para Return predictability
em AMS Tesi di Dottorato - Alm@DL - Università di Bologna
Resumo:
L’elaborato ha lo scopo di presentare le nuove opportunità di business offerte dal Web. Il rivoluzionario cambiamento che la pervasività della Rete e tutte le attività correlate stanno portando, ha posto le aziende davanti ad un diverso modo di relazionarsi con i propri consumatori, che sono sempre più informati, consapevoli ed esigenti, e con la concorrenza. La sfida da accettare per rimanere competitivi sul mercato è significativa e il mutamento in rapido sviluppo: gli aspetti che contraddistinguono questo nuovo paradigma digitale sono, infatti, velocità, mutevolezza, ma al tempo stesso misurabilità, ponderabilità, previsione. Grazie agli strumenti tecnologici a disposizione e alle dinamiche proprie dei diversi spazi web (siti, social network, blog, forum) è possibile tracciare più facilmente, rispetto al passato, l’impatto di iniziative, lanci di prodotto, promozioni e pubblicità, misurandone il ritorno sull’investimento, oltre che la percezione dell’utente finale. Un approccio datacentrico al marketing, attraverso analisi di monitoraggio della rete, permette quindi al brand investimenti più mirati e ponderati sulla base di stime e previsioni. Tra le più significative strategie di marketing digitale sono citate: social advertising, keyword advertising, digital PR, social media, email marketing e molte altre. Sono riportate anche due case history: una come ottimo esempio di co-creation in cui il brand ha coinvolto direttamente il pubblico nel processo di produzione del prodotto, affidando ai fan della Pagina Facebook ufficiale la scelta dei gusti degli yogurt da mettere in vendita. La seconda, caso internazionale di lead generation, ha permesso al brand di misurare la conversione dei visitatori del sito (previa compilazione di popin) in reali acquirenti, collegando i dati di traffico del sito a quelli delle vendite. Esempio di come online e offline comunichino strettamente.
Resumo:
The subject of this work concerns the study of the immigration phenomenon, with emphasis on the aspects related to the integration of an immigrant population in a hosting one. Aim of this work is to show the forecasting ability of a recent finding where the behavior of integration quantifiers was analyzed and investigated with a mathematical model of statistical physics origins (a generalization of the monomer dimer model). After providing a detailed literature review of the model, we show that not only such a model is able to identify the social mechanism that drives a particular integration process, but it also provides correct forecast. The research reported here proves that the proposed model of integration and its forecast framework are simple and effective tools to reduce uncertainties about how integration phenomena emerge and how they are likely to develop in response to increased migration levels in the future.
Resumo:
This thesis describes the development of the Sample Fetch Rover (SFR), studied for Mars Sample Return (MSR), an international campaign carried out in cooperation between the National Aeronautics and Space Administration (NASA) and the European Space Agency (ESA). The focus of this document is the design of the electro-mechanical systems of the rover. After placing this work into the general context of robotic planetary exploration and summarising the state of the art for what concerns Mars rovers, the architecture of the Mars Sample Return Campaign is presented. A complete overview of the current SFR architecture is provided, touching upon all the main subsystems of the spacecraft. For each area, it is discussed what are the design drivers, the chosen solutions and whether they use heritage technology (in particular from the ExoMars Rover) or new developments. This research focuses on two topics of particular interest, due to their relevance for the mission and the novelty of their design: locomotion and sample acquisition, which are discussed in depth. The early SFR locomotion concepts are summarised, covering the initial trade-offs and discarded designs for higher traverse performance. Once a consolidated architecture was reached, the locomotion subsystem was developed further, defining the details of the suspension, actuators, deployment mechanisms and wheels. This technology is presented here in detail, including some key analysis and test results that support the design and demonstrate how it responds to the mission requirements. Another major electro-mechanical system developed as part of this work is the one dedicated to sample tube acquisition. The concept of operations of this machinery was defined to be robust against the unknown conditions that characterise the mission. The design process led to a highly automated robotic system which is described here in its main components: vision system, robotic arm and tube storage.
Resumo:
Earthquake prediction is a complex task for scientists due to the rare occurrence of high-intensity earthquakes and their inaccessible depths. Despite this challenge, it is a priority to protect infrastructure, and populations living in areas of high seismic risk. Reliable forecasting requires comprehensive knowledge of seismic phenomena. In this thesis, the development, application, and comparison of both deterministic and probabilistic forecasting methods is shown. Regarding the deterministic approach, the implementation of an alarm-based method using the occurrence of strong (fore)shocks, widely felt by the population, as a precursor signal is described. This model is then applied for retrospective prediction of Italian earthquakes of magnitude M≥5.0,5.5,6.0, occurred in Italy from 1960 to 2020. Retrospective performance testing is carried out using tests and statistics specific to deterministic alarm-based models. Regarding probabilistic models, this thesis focuses mainly on the EEPAS and ETAS models. Although the EEPAS model has been previously applied and tested in some regions of the world, it has never been used for forecasting Italian earthquakes. In the thesis, the EEPAS model is used to retrospectively forecast Italian shallow earthquakes with a magnitude of M≥5.0 using new MATLAB software. The forecasting performance of the probabilistic models was compared to other models using CSEP binary tests. The EEPAS and ETAS models showed different characteristics for forecasting Italian earthquakes, with EEPAS performing better in the long-term and ETAS performing better in the short-term. The FORE model based on strong precursor quakes is compared to EEPAS and ETAS using an alarm-based deterministic approach. All models perform better than a random forecasting model, with ETAS and FORE models showing better performance. However, to fully evaluate forecasting performance, prospective tests should be conducted. The lack of objective tests for evaluating deterministic models and comparing them with probabilistic ones was a challenge faced during the study.