5 resultados para Respiratory cooling

em AMS Tesi di Dottorato - Alm@DL - Università di Bologna


Relevância:

20.00% 20.00%

Publicador:

Resumo:

A fundamental gap in the current understanding of collapsed structures in the universe concerns the thermodynamical evolution of the ordinary, baryonic component. Unopposed radiative cooling of plasma would lead to the cooling catastrophe, a massive inflow of condensing gas toward the centre of galaxies, groups and clusters. The last generation of multiwavelength observations has radically changed our view on baryons, suggesting that the heating linked to the active galactic nucleus (AGN) may be the balancing counterpart of cooling. In this Thesis, I investigate the engine of the heating regulated by the central black hole. I argue that the mechanical feedback, based on massive subrelativistic outflows, is the key to solving the cooling flow problem, i.e. dramatically quenching the cooling rates for several billion years without destroying the cool-core structure. Using an upgraded version of the parallel 3D hydrodynamic code FLASH, I show that anisotropic AGN outflows can further reproduce fundamental observed features, such as buoyant bubbles, cocoon shocks, sonic ripples, metals dredge-up, and subsonic turbulence. The latter is an essential ingredient to drive nonlinear thermal instabilities, which cause cold gas condensation, a residual of the quenched cooling flow and, later, fuel for the AGN feedback engine. The self-regulated outflows are systematically tested on the scales of massive clusters, groups and isolated elliptical galaxies: in lighter less bound objects the feedback needs to be gentler and less efficient, in order to avoid drastic overheating. In this Thesis, I describe in depth the complex hydrodynamics, involving the coupling of the feedback energy to that of the surrounding hot medium. Finally, I present the merits and flaws of all the proposed models, with a critical eye toward observational concordance.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

Diseases due to mutations in mitochondrial DNA probably represent the most common form of metabolic disorders, including cancer, as highlighted in the last years. Approximately 300 mtDNA alterations have been identified as the genetic cause of mitochondrial diseases and one-third of these alterations are located in the coding genes for OXPHOS proteins. Despite progress in identification of their molecular mechanisms, little has been done with regard to the therapy. Recently, a particular gene therapy approach, namely allotopic expression, has been proposed and optimized, although the results obtained are rather controversial. In fact, this approach consists in synthesis of a wild-type version of mutated OXPHOS protein in the cytosolic compartment and in its import into mitochondria, but the available evidence is based only on the partial phenotype rescue and not on the demonstration of effective incorporation of the functional protein into respiratory complexes. In the present study, we took advantage of a previously analyzed cell model bearing the m.3571insC mutation in MTND1 gene for the ND1 subunit of respiratory chain complex I. This frame-shift mutation induces in fact translation of a truncated ND1 protein then degraded, causing complex I disassembly, and for this reason not in competition with that allotopically expressed. We show here that allotopic ND1 protein is correctly imported into mitochondria and incorporated in complex I, promoting its proper assembly and rescue of its function. This result allowed us to further confirm what we have previously demonstrated about the role of complex I in tumorigenesis process. Injection of the allotopic clone in nude mice showed indeed that the rescue of complex I assembly and function increases tumor growth, inducing stabilization of HIF1α, the master regulator of tumoral progression, and consequently its downstream gene expression activation.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

Speeding the VO2 kinetics results in a reduction of the O2 deficit. Two factors might determine VO2 kinetics: oxygen delivery to muscle (Tschakovsky and Hughson 1999) and a muscle 'metabolic inertia' (Grassi et al. 1996). Therefore, in study 1 we investigated VO2 kinetics and cardiovascular system adaptations during step exercise transitions in different regions of the moderate domain. In study 2 we investigated muscle oxygenation and cardio-pulmonary adaptations during step exercise tests before, after and over a period of training. Study 1 methods: Seven subjects (26 ± 8 yr; 176 ± 5 cm; 69 ± 6 kg) performed 4 types of step transition from rest (0-50W; 0-100W) or elevate baseline (25-75W; 25-125W). GET and VO2max were assessed before testing. O2 uptake and were measured during testing. Study 2 methods: 10 subjects (25 ± 4 yr; 175 ± 9 cm; 71 ± 12 kg) performed a step transition test (0 to 100 W) before, after and during 4 weeks of endurance training (ET). VO2max and GET were assessed before and after of ET (40 minutes, 3 times a week, 60% O2max). VO2 uptake, Q and deoxyheamoglobin were measured during testing. Study 1 results: VO2 τ and the functional gain were slower in the upper regions of the moderate domain. Q increased more abruptly during rest to work condition. Q τ was faster than VO2 τ for each exercise step. Study 2 results: VO2 τ became faster after ET (25%) and particularly after 1 training session (4%). Q kinetics changed after 4 training sessions nevertheless it was always faster than VO2 τ. An attenuation in ∆[HHb] /∆VO2 was detectible. Conclusion: these investigations suggest that muscle fibres recruitment exerts a influence on the VO2 response within the moderate domain either during different forms of step transition or following ET.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

Evidence accumulated in the last ten years has demonstrated that a large proportion of the mitochondrial respiratory chain complexes in a variety of organisms is arranged in supramolecular assemblies called supercomplexes or respirasomes. Besides conferring a kinetic advantage (substrate channeling) and being required for the assembly and stability of Complex I, indirect considerations support the view that supercomplexes may also prevent excessive formation of reactive oxygen species (ROS) from the respiratory chain. Following this line of thought we have decided to directly investigate ROS production by Complex I under conditions in which the complex is arranged as a component of the supercomplex I1III2 or it is dissociated as an individual enzyme. The study has been addressed both in bovine heart mitochondrial membranes and in reconstituted proteoliposomes composed of complexes I and III in which the supramolecular organization of the respiratory assemblies is impaired by: (i) treatment either of bovine heart mitochondria or liposome-reconstituted supercomplex I-III with dodecyl maltoside; (ii) reconstitution of Complexes I and III at high phospholipids to protein ratio. The results of this investigation provide experimental evidence that the production of ROS is strongly increased in either model; supporting the view that disruption or prevention of the association between Complex I and Complex III by different means enhances the generation of superoxide from Complex I . This is the first demonstration that dissociation of the supercomplex I1III2 in the mitochondrial membrane is a cause of oxidative stress from Complex I. Previous work in our laboratory demonstrated that lipid peroxidation can dissociate the supramolecular assemblies; thus, here we confirm that preliminary conclusion that primary causes of oxidative stress may perpetuate reactive oxygen species (ROS) generation by a vicious circle involving supercomplex dissociation as a major determinant.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

The arousal scoring in Obstructive Sleep Apnea Syndrome (OSAS) is important to clarify the impact of the disease on sleep but the currently applied American Academy of Sleep Medicine (AASM) definition may underestimate the subtle alterations of sleep. The aims of the present study were to evaluate the impact of respiratory events on cortical and autonomic arousal response and to quantify the additional value of cyclic alternating pattern (CAP) and pulse wave amplitude (PWA) for a more accurate detection of respiratory events and sleep alterations in OSAS patients. A retrospective revision of 19 polysomnographic recordings of OSAS patients was carried out. Analysis was focused on quantification of apneas (AP), hypopneas (H) and flow limitation (FL) events, and on investigation of cerebral and autonomic activity. Only 41.1% of FL events analyzed in non rapid eye movement met the AASM rules for the definition of respiratory event-related arousal (RERA), while 75.5% of FL events ended with a CAP A phase. The dual response (EEG-PWA) was the most frequent response for all subtypes of respiratory event with a progressive reduction from AP to H and FL. 87.7% of respiratory events with EEG activation showed also a PWA drop and 53,4% of the respiratory events without EEG activation presented a PWA drop. The relationship between the respiratory events and the arousal response is more complex than that suggested by the international classification. In the estimation of the response to respiratory events, the CAP scoring and PWA analysis can offer more extensive information compared to the AASM rules. Our data confirm also that the application of PWA scoring improves the detection of respiratory events and could reduce the underestimation of OSAS severity compared to AASM arousal.