12 resultados para Residual autocorrelation and autocovariance matrices
em AMS Tesi di Dottorato - Alm@DL - Università di Bologna
Resumo:
The ability of integrating into a unified percept sensory inputs deriving from different sensory modalities, but related to the same external event, is called multisensory integration and might represent an efficient mechanism of sensory compensation when a sensory modality is damaged by a cortical lesion. This hypothesis has been discussed in the present dissertation. Experiment 1 explored the role of superior colliculus (SC) in multisensory integration, testing patients with collicular lesions, patients with subcortical lesions not involving the SC and healthy control subjects in a multisensory task. The results revealed that patients with collicular lesions, paralleling the evidence of animal studies, demonstrated a loss of multisensory enhancement, in contrast with control subjects, providing the first lesional evidence in humans of the essential role of SC in mediating audio-visual integration. Experiment 2 investigated the role of cortex in mediating multisensory integrative effects, inducing virtual lesions by inhibitory theta-burst stimulation on temporo-parietal cortex, occipital cortex and posterior parietal cortex, demonstrating that only temporo-parietal cortex was causally involved in modulating the integration of audio-visual stimuli at the same spatial location. Given the involvement of the retino-colliculo-extrastriate pathway in mediating audio-visual integration, the functional sparing of this circuit in hemianopic patients is extremely relevant in the perspective of a multisensory-based approach to the recovery of unisensory defects. Experiment 3 demonstrated the spared functional activity of this circuit in a group of hemianopic patients, revealing the presence of implicit recognition of the fearful content of unseen visual stimuli (i.e. affective blindsight), an ability mediated by the retino-colliculo-extrastriate pathway and its connections with amygdala. Finally, Experiment 4 provided evidence that a systematic audio-visual stimulation is effective in inducing long-lasting clinical improvements in patients with visual field defect and revealed that the activity of the spared retino-colliculo-extrastriate pathway is responsible of the observed clinical amelioration, as suggested by the greater improvement observed in patients with cortical lesions limited to the occipital cortex, compared to patients with lesions extending to other cortical areas, found in tasks high demanding in terms of spatial orienting. Overall, the present results indicated that multisensory integration is mediated by the retino-colliculo-extrastriate pathway and that a systematic audio-visual stimulation, activating this spared neural circuit, is able to affect orientation towards the blind field in hemianopic patients and, therefore, might constitute an effective and innovative approach for the rehabilitation of unisensory visual impairments.
Resumo:
This thesis will focus on the residual function and visual and attentional deficits in human patients, which accompany damage to the visual cortex or its thalamic afferents, and plastic changes, which follow it. In particular, I will focus on homonymous visual field defects, which comprise a broad set of central disorders of vision. I will present experimental evidence that when the primary visual pathway is completely damaged, the only signal that can be implicitly processed via subcortical visual networks is fear. I will also present data showing that in a patient with relative deafferentation of visual cortex, changes in the spatial tuning and response gain of the contralesional and ipsilesional cortex are observed, which are accompanied by changes in functional connectivity with regions belonging to the dorsal attentional network and the default mode network. I will also discuss how cortical plasticity might be harnessed to improve recovery through novel treatments. Moreover, I will show how treatment interventions aimed at recruiting spared subcortical pathway supporting multisensory orienting can drive network level change.
Resumo:
Biohybrid derivatives of π-conjugated materials are emerging as powerful tools to study biological events through the (opto)electronic variations of the π-conjugated moieties, as well as to direct and govern the self-assembly properties of the organic materials through the organization principles of the bio component. So far, very few examples of thiophene-based biohybrids have been reported. The aim of this Ph. D thesis has been the development of oligothiophene-oligonucleotide hybrid derivatives as tools, on one side, to detect DNA hybridisation events and, on the other, as model compounds to investigate thiophene-nucleobase interactions in the solid state. To obtain oligothiophene bioconjugates with the required high level of purity, we first developed new synthetic ecofriendly protocols for the synthesis of thiophene oligomers. Our innovative heterogeneous Suzuki coupling methodology, carried out in EtOH/water or isopropanol under microwave irradiation, allowed us to obtain alkyl substituted oligothiophenes and thiophene based co-oligomers in high yields and very short reaction times, free from residual metals and with improved film forming properties. These methodologies were subsequently applied in the synthesis of oligothiophene-oligonucleotide conjugates. Oligothiophene-5-labeled deoxyuridines were synthesized and incorporated into 19-meric oligonucletide sequences. We showed that the oligothiophene-labeled oligonucletide sequences obtained can be used as probes to detect a single nucleotide polymorphism (SNP) in complementary DNA target sequences. In fact, all the probes showed marked variations in emission intensity upon hybridization with a complementary target sequence. The observed variations in emitted light were comparable or even superior to those reported in similar studies, showing that the biohybrids can potentially be useful to develop biosensors for the detection of DNA mismatches. Finally, water-soluble, photoluminescent and electroactive dinucleotide-hybrid derivatives of quaterthiophene and quinquethiophene were synthesized. By means of a combination of spectroscopy and microscopy techniques, electrical characterizations, microfluidic measurements and theoretical calculations, we were able to demonstrate that the self-assembly modalities of the biohybrids in thin films are driven by the interplay of intra and intermolecular interactions in which the π-stacking between the oligothiophene and nucleotide bases plays a major role.
Resumo:
Osmotic Dehydration and Vacuum Impregnation are interesting operations in the food industry with applications in minimal fruit processing and/or freezing, allowing to develop new products with specific innovative characteristics. Osmotic dehydration is widely used for the partial removal of water from cellular tissue by immersion in hypertonic (osmotic) solution. The driving force for the diffusion of water from the tissue is provided by the differences in water chemical potential between the external solution and the internal liquid phase of the cells. Vacuum Impregnation of porous products immersed in a liquid phase consist of reduction of pressure in a solid-liquid system (vacuum step) followed by the restoration of atmospheric pressure (atmospheric step). During the vacuum step the internal gas in the product pores is expanded and partially flows out while during the atmospheric step, there is a compression of residual gas and the external liquid flows into the pores (Fito, 1994). This process is also a very useful unit operation in food engineering as it allows to introduce specific solutes in the tissue which can play different functions (antioxidants, pH regulators, preservatives, cryoprotectants etc.). The present study attempts to enhance our understanding and knowledge of fruit as living organism, interacting dynamically with the environment, and to explore metabolic, structural, physico-chemical changes during fruit processing. The use of innovative approaches and/or technologies such as SAFES (Systematic Approach to Food Engineering System), LF-NMR (Low Frequency Nuclear Magnetic Resonance), GASMAS (Gas in Scattering Media Absorption Spectroscopy) are very promising to deeply study these phenomena. SAFES methodology was applied in order to study irreversibility of the structural changes of kiwifruit during short time of osmotic treatment. The results showed that the deformed tissue can recover its initial state 300 min after osmotic dehydration at 25 °C. The LF-NMR resulted very useful in water status and compartmentalization study, permitting to separate observation of three different water population presented in vacuole, cytoplasm plus extracellular space and cell wall. GASMAS techniques was able to study the pressure equilibration after Vacuum Impregnation showing that after restoration of atmospheric pressure in the solid-liquid system, there was a reminding internal low pressure in the apple tissue that slowly increases until reaching the atmospheric pressure, in a time scale that depends on the vacuum applied during the vacuum step. The physiological response of apple tissue on Vacuum Impregnation process was studied indicating the possibility of vesicular transport within the cells. Finally, the possibility to extend the freezing tolerance of strawberry fruits impregnated with cryoprotectants was proven.
Resumo:
Lesions to the primary geniculo-striate visual pathway cause blindness in the contralesional visual field. Nevertheless, previous studies have suggested that patients with visual field defects may still be able to implicitly process the affective valence of unseen emotional stimuli (affective blindsight) through alternative visual pathways bypassing the striate cortex. These alternative pathways may also allow exploitation of multisensory (audio-visual) integration mechanisms, such that auditory stimulation can enhance visual detection of stimuli which would otherwise be undetected when presented alone (crossmodal blindsight). The present dissertation investigated implicit emotional processing and multisensory integration when conscious visual processing is prevented by real or virtual lesions to the geniculo-striate pathway, in order to further clarify both the nature of these residual processes and the functional aspects of the underlying neural pathways. The present experimental evidence demonstrates that alternative subcortical visual pathways allow implicit processing of the emotional content of facial expressions in the absence of cortical processing. However, this residual ability is limited to fearful expressions. This finding suggests the existence of a subcortical system specialised in detecting danger signals based on coarse visual cues, therefore allowing the early recruitment of flight-or-fight behavioural responses even before conscious and detailed recognition of potential threats can take place. Moreover, the present dissertation extends the knowledge about crossmodal blindsight phenomena by showing that, unlike with visual detection, sound cannot crossmodally enhance visual orientation discrimination in the absence of functional striate cortex. This finding demonstrates, on the one hand, that the striate cortex plays a causative role in crossmodally enhancing visual orientation sensitivity and, on the other hand, that subcortical visual pathways bypassing the striate cortex, despite affording audio-visual integration processes leading to the improvement of simple visual abilities such as detection, cannot mediate multisensory enhancement of more complex visual functions, such as orientation discrimination.
Resumo:
The use of guided ultrasonic waves (GUW) has increased considerably in the fields of non-destructive (NDE) testing and structural health monitoring (SHM) due to their ability to perform long range inspections, to probe hidden areas as well as to provide a complete monitoring of the entire waveguide. Guided waves can be fully exploited only once their dispersive properties are known for the given waveguide. In this context, well stated analytical and numerical methods are represented by the Matrix family methods and the Semi Analytical Finite Element (SAFE) methods. However, while the former are limited to simple geometries of finite or infinite extent, the latter can model arbitrary cross-section waveguides of finite domain only. This thesis is aimed at developing three different numerical methods for modelling wave propagation in complex translational invariant systems. First, a classical SAFE formulation for viscoelastic waveguides is extended to account for a three dimensional translational invariant static prestress state. The effect of prestress, residual stress and applied loads on the dispersion properties of the guided waves is shown. Next, a two-and-a-half Boundary Element Method (2.5D BEM) for the dispersion analysis of damped guided waves in waveguides and cavities of arbitrary cross-section is proposed. The attenuation dispersive spectrum due to material damping and geometrical spreading of cavities with arbitrary shape is shown for the first time. Finally, a coupled SAFE-2.5D BEM framework is developed to study the dispersion characteristics of waves in viscoelastic waveguides of arbitrary geometry embedded in infinite solid or liquid media. Dispersion of leaky and non-leaky guided waves in terms of speed and attenuation, as well as the radiated wavefields, can be computed. The results obtained in this thesis can be helpful for the design of both actuation and sensing systems in practical application, as well as to tune experimental setup.
Resumo:
Within the framework of the AdS5/CFT4 correspondence, the GKP string living on a AdS5 x S5 background finds a counterpart in the anti-ferromagnetic vacuum state for the spin chain, fruitfully employed to investigate the dual N=4 SYM superconformal gauge theory. The thesis mainly deals with the excitations over such a vacuum: dispersion relations and scattering matrices are computed, moreover a set of Asymptotic Bethe Ansatz equations is formulated. Furthermore, the survey of the GKP vacuum within the AdS4/CFT3 duality between a string theory on AdS4 x CP 3 and N=6 Chern-Simons reveals intriguing connections relating the latter to N=4 SYM, in a peculiar high spin limit.
Resumo:
We investigated at the molecular level protein/solvent interactions and their relevance in protein function through the use of amorphous matrices at room temperature. As a model protein, we used the bacterial photosynthetic reaction center (RC) of Rhodobacter sphaeroides, a pigment protein complex which catalyzes the light-induced charge separation initiating the conversion of solar into chemical energy. The thermal fluctuations of the RC and its dielectric conformational relaxation following photoexcitation have been probed by analyzing the recombination kinetics of the primary charge-separated (P+QA-) state, using time resolved optical and EPR spectroscopies. We have shown that the RC dynamics coupled to this electron transfer process can be progressively inhibited at room temperature by decreasing the water content of RC films or of RC-trehalose glassy matrices. Extensive dehydration of the amorphous matrices inhibits RC relaxation and interconversion among conformational substates to an extent comparable to that attained at cryogenic temperatures in water-glycerol samples. An isopiestic method has been developed to finely tune the hydration level of the system. We have combined FTIR spectral analysis of the combination and association bands of residual water with differential light-minus-dark FTIR and high-field EPR spectroscopy to gain information on thermodynamics of water sorption, and on structure/dynamics of the residual water molecules, of protein residues and of RC cofactors. The following main conclusions were reached: (i) the RC dynamics is slaved to that of the hydration shell; (ii) in dehydrated trehalose glasses inhibition of protein dynamics is most likely mediated by residual water molecules simultaneously bound to protein residues and sugar molecules at the protein-matrix interface; (iii) the local environment of cofactors is not involved in the conformational dynamics which stabilizes the P+QA-; (iv) this conformational relaxation appears to be rather delocalized over several aminoacidic residues as well as water molecules weakly hydrogen-bonded to the RC.
Resumo:
The present PhD thesis was focused on the development and application of chemical methodology (Py-GC-MS) and data-processing method by multivariate data analysis (chemometrics). The chromatographic and mass spectrometric data obtained with this technique are particularly suitable to be interpreted by chemometric methods such as PCA (Principal Component Analysis) as regards data exploration and SIMCA (Soft Independent Models of Class Analogy) for the classification. As a first approach, some issues related to the field of cultural heritage were discussed with a particular attention to the differentiation of binders used in pictorial field. A marker of egg tempera the phosphoric acid esterified, a pyrolysis product of lecithin, was determined using HMDS (hexamethyldisilazane) rather than the TMAH (tetramethylammonium hydroxide) as a derivatizing reagent. The validity of analytical pyrolysis as tool to characterize and classify different types of bacteria was verified. The FAMEs chromatographic profiles represent an important tool for the bacterial identification. Because of the complexity of the chromatograms, it was possible to characterize the bacteria only according to their genus, while the differentiation at the species level has been achieved by means of chemometric analysis. To perform this study, normalized areas peaks relevant to fatty acids were taken into account. Chemometric methods were applied to experimental datasets. The obtained results demonstrate the effectiveness of analytical pyrolysis and chemometric analysis for the rapid characterization of bacterial species. Application to a samples of bacterial (Pseudomonas Mendocina), fungal (Pleorotus ostreatus) and mixed- biofilms was also performed. A comparison with the chromatographic profiles established the possibility to: • Differentiate the bacterial and fungal biofilms according to the (FAMEs) profile. • Characterize the fungal biofilm by means the typical pattern of pyrolytic fragments derived from saccharides present in the cell wall. • Individuate the markers of bacterial and fungal biofilm in the same mixed-biofilm sample.
Resumo:
Perfluoroalkylated substances are a group of chemicals that have been largely employed during the last 60 years in several applications, widely spreading and accumulating in the environment due to their extreme resistance to degradation. As a consequence, they have been found also in various types of food as well as in drinking water, proving that they can easily reach humans through the diet. The available information concerning their adverse effects on health has recently increased the interest towards these contaminants and highlighted the importance of investigating all the potential sources of human exposure, among which diet was proved to be the most relevant. This need has been underlined by the European Union through Recommendation 2010/161/EU: in this document, Member States were called to monitor their presence of in food, producing accurate estimations of human exposure. The purpose of the research presented in this thesis, which is the result of a partnership between an Italian and a French laboratory, was to develop reliable tools for the analysis of these pollutants in food, to be used for generating data on potentially contaminated matrices. An efficient method based on liquid chromatography-mass spectrometry for the detection of 16 different perfluorinated compounds in milk has been validated in accordance with current European regulation guidelines (2002/657/EC) and is currently under evaluation for ISO 17025 accreditation. The proposed technique was applied to cow, powder and human breast milk samples from Italy and France to produce a preliminary monitoring on the presence of these contaminants. In accordance with the above mentioned European Recommendation, this project led also to the development of a promising technique for the quantification of some precursors of these substances in fish. This method showed extremely satisfying performances in terms of linearity and limits of detection, and will be useful for future surveys.
Resumo:
This thesis reports an integrated analytical and physicochemical approach for the study of natural substances and new drugs based on mass spectrometry techniques combined with liquid chromatography. In particular, Chapter 1 concerns the study of Berberine a natural substance with pharmacological activity for the treatment of hepatobiliary and intestinal diseases. The first part focused on the relationships between physicochemical properties, pharmacokinetics and metabolism of Berberine and its metabolites. For this purpose a sensitive HPLC-ES-MS/MS method have been developed, validated and used to determine these compounds during their physicochemical properties studies and plasma levels of berberine and its metabolites including berberrubine(M1), demethylenberberine(M3), and jatrorrhizine(M4) in humans. Data show that M1, could have an efficient intestinal absorption by passive diffusion due to a keto-enol tautomerism confirmed by NMR studies and its higher plasma concentration. In the second part of Chapter 1, a comparison between M1 and BBR in vivo biodistribution in rat has been studied. In Chapter 2 a new HPLC-ES-MS/MS method for the simultaneous determination and quantification of glucosinolates, as glucoraphanin, glucoerucin and sinigrin, and isothiocyanates, as sulforaphane and erucin, has developed and validated. This method has been used for the analysis of functional foods enriched with vegetable extracts. Chapter 3 focused on a physicochemical study of the interaction between the bile acid sequestrants used in the treatment of hypercholesterolemia including colesevelam and cholestyramine with obeticolic acid (OCA), potent agonist of nuclear receptor farnesoid X (FXR). In particular, a new experimental model for the determination of equilibrium binding isotherm was developed. Chapter 4 focused on methodological aspects of new hard ionization coupled with liquid chromatography (Direct-EI-UHPLC-MS) not yet commercially available and potentially useful for qualitative analysis and for “transparent” molecules to soft ionization techniques. This method was applied to the analysis of several steroid derivatives.