17 resultados para Research projects

em AMS Tesi di Dottorato - Alm@DL - Università di Bologna


Relevância:

60.00% 60.00%

Publicador:

Resumo:

Ion channels are protein molecules, embedded in the lipid bilayer of the cell membranes. They act as powerful sensing elements switching chemicalphysical stimuli into ion-fluxes. At a glance, ion channels are water-filled pores, which can open and close in response to different stimuli (gating), and one once open select the permeating ion species (selectivity). They play a crucial role in several physiological functions, like nerve transmission, muscular contraction, and secretion. Besides, ion channels can be used in technological applications for different purpose (sensing of organic molecules, DNA sequencing). As a result, there is remarkable interest in understanding the molecular determinants of the channel functioning. Nowadays, both the functional and the structural characteristics of ion channels can be experimentally solved. The purpose of this thesis was to investigate the structure-function relation in ion channels, by computational techniques. Most of the analyses focused on the mechanisms of ion conduction, and the numerical methodologies to compute the channel conductance. The standard techniques for atomistic simulation of complex molecular systems (Molecular Dynamics) cannot be routinely used to calculate ion fluxes in membrane channels, because of the high computational resources needed. The main step forward of the PhD research activity was the development of a computational algorithm for the calculation of ion fluxes in protein channels. The algorithm - based on the electrodiffusion theory - is computational inexpensive, and was used for an extensive analysis on the molecular determinants of the channel conductance. The first record of ion-fluxes through a single protein channel dates back to 1976, and since then measuring the single channel conductance has become a standard experimental procedure. Chapter 1 introduces ion channels, and the experimental techniques used to measure the channel currents. The abundance of functional data (channel currents) does not match with an equal abundance of structural data. The bacterial potassium channel KcsA was the first selective ion channels to be experimentally solved (1998), and after KcsA the structures of four different potassium channels were revealed. These experimental data inspired a new era in ion channel modeling. Once the atomic structures of channels are known, it is possible to define mathematical models based on physical descriptions of the molecular systems. These physically based models can provide an atomic description of ion channel functioning, and predict the effect of structural changes. Chapter 2 introduces the computation methods used throughout the thesis to model ion channels functioning at the atomic level. In Chapter 3 and Chapter 4 the ion conduction through potassium channels is analyzed, by an approach based on the Poisson-Nernst-Planck electrodiffusion theory. In the electrodiffusion theory ion conduction is modeled by the drift-diffusion equations, thus describing the ion distributions by continuum functions. The numerical solver of the Poisson- Nernst-Planck equations was tested in the KcsA potassium channel (Chapter 3), and then used to analyze how the atomic structure of the intracellular vestibule of potassium channels affects the conductance (Chapter 4). As a major result, a correlation between the channel conductance and the potassium concentration in the intracellular vestibule emerged. The atomic structure of the channel modulates the potassium concentration in the vestibule, thus its conductance. This mechanism explains the phenotype of the BK potassium channels, a sub-family of potassium channels with high single channel conductance. The functional role of the intracellular vestibule is also the subject of Chapter 5, where the affinity of the potassium channels hEag1 (involved in tumour-cell proliferation) and hErg (important in the cardiac cycle) for several pharmaceutical drugs was compared. Both experimental measurements and molecular modeling were used in order to identify differences in the blocking mechanism of the two channels, which could be exploited in the synthesis of selective blockers. The experimental data pointed out the different role of residue mutations in the blockage of hEag1 and hErg, and the molecular modeling provided a possible explanation based on different binding sites in the intracellular vestibule. Modeling ion channels at the molecular levels relates the functioning of a channel to its atomic structure (Chapters 3-5), and can also be useful to predict the structure of ion channels (Chapter 6-7). In Chapter 6 the structure of the KcsA potassium channel depleted from potassium ions is analyzed by molecular dynamics simulations. Recently, a surprisingly high osmotic permeability of the KcsA channel was experimentally measured. All the available crystallographic structure of KcsA refers to a channel occupied by potassium ions. To conduct water molecules potassium ions must be expelled from KcsA. The structure of the potassium-depleted KcsA channel and the mechanism of water permeation are still unknown, and have been investigated by numerical simulations. Molecular dynamics of KcsA identified a possible atomic structure of the potassium-depleted KcsA channel, and a mechanism for water permeation. The depletion from potassium ions is an extreme situation for potassium channels, unlikely in physiological conditions. However, the simulation of such an extreme condition could help to identify the structural conformations, so the functional states, accessible to potassium ion channels. The last chapter of the thesis deals with the atomic structure of the !- Hemolysin channel. !-Hemolysin is the major determinant of the Staphylococcus Aureus toxicity, and is also the prototype channel for a possible usage in technological applications. The atomic structure of !- Hemolysin was revealed by X-Ray crystallography, but several experimental evidences suggest the presence of an alternative atomic structure. This alternative structure was predicted, combining experimental measurements of single channel currents and numerical simulations. This thesis is organized in two parts, in the first part an overview on ion channels and on the numerical methods adopted throughout the thesis is provided, while the second part describes the research projects tackled in the course of the PhD programme. The aim of the research activity was to relate the functional characteristics of ion channels to their atomic structure. In presenting the different research projects, the role of numerical simulations to analyze the structure-function relation in ion channels is highlighted.

Relevância:

60.00% 60.00%

Publicador:

Resumo:

The need for high bandwidth, due to the explosion of new multi\-media-oriented IP-based services, as well as increasing broadband access requirements is leading to the need of flexible and highly reconfigurable optical networks. While transmission bandwidth does not represent a limit due to the huge bandwidth provided by optical fibers and Dense Wavelength Division Multiplexing (DWDM) technology, the electronic switching nodes in the core of the network represent the bottleneck in terms of speed and capacity for the overall network. For this reason DWDM technology must be exploited not only for data transport but also for switching operations. In this Ph.D. thesis solutions for photonic packet switches, a flexible alternative with respect to circuit-switched optical networks are proposed. In particular solutions based on devices and components that are expected to mature in the near future are proposed, with the aim to limit the employment of complex components. The work presented here is the result of part of the research activities performed by the Networks Research Group at the Department of Electronics, Computer Science and Systems (DEIS) of the University of Bologna, Italy. In particular, the work on optical packet switching has been carried on within three relevant research projects: the e-Photon/ONe and e-Photon/ONe+ projects, funded by the European Union in the Sixth Framework Programme, and the national project OSATE funded by the Italian Ministry of Education, University and Scientific Research. The rest of the work is organized as follows. Chapter 1 gives a brief introduction to network context and contention resolution in photonic packet switches. Chapter 2 presents different strategies for contention resolution in wavelength domain. Chapter 3 illustrates a possible implementation of one of the schemes proposed in chapter 2. Then, chapter 4 presents multi-fiber switches, which employ jointly wavelength and space domains to solve contention. Chapter 5 shows buffered switches, to solve contention in time domain besides wavelength domain. Finally chapter 6 presents a cost model to compare different switch architectures in terms of cost.

Relevância:

60.00% 60.00%

Publicador:

Resumo:

Mycotoxins are heterogeneous chemical compounds characterized by a low molecular weight and synthesized by the secondary metabolism of different molds. Fumonisins are water-soluble mycotoxins produced by Fusarium species spoiling corn and derived produc ts. These mycotoxins can be a health hazard when consuming contaminated cereals, but they can reach humans also indirectly through the consumption of food products derived from animals fed with contaminated feed. Fumonisins have been associated with several animal and human diseases: they are suspected risk factors for esophageal and liver cancers, neural tube defects and cardiovascular problems. Improved methods are needed to accurately assess fumonisins concentrations in food of vegetable and animal origin, in order to prevent acute and chronic human exposure. The aim of the present work was to evaluate the versatility and the performances of mass spectrometry, coupled with liquid chromatography, in fumonisins analysis from foods and matrices of animal origin. Different methods for the identification and quantification of fumonisins and related products have been developed and validated to determine fumonisin B1 in milk, fumonisin B1, fumonisin B2 and their complete hydrolyzed products (HFB1 and HFB2) in pig liver and fumonisins B1 and B2 in complete and complementary dry dog food. The experimental procedures have been carefully studied, considering matrices features, number and type of molecules to detect. Therefore, several extraction, clean up and separation techniques were tested in order to obtain the better conditions of sample processing. The fit for purpose sample preparation, matched with high mass spectrometry sensibility and specificity, have allowed to achieve good results in any tested animal matrices. Hence, the developed methods were validated and have shown a high accuracy, sensibility and precision, fulfilling performance requirements of Decision 2002/657/EC and of European Project Standard, Measuring and Testing (SMT). In any developed method, the analytes were identified and quantified even at very low concentrations : the limits of quantification resulted lower than other similar works, performed with different detectors. These methods were applied to some commercial samples and to some samples collected for research projects in the Department of Veterinary Public Health and Animal Pathology (DVPHAP) of University of Bologna. Although the disclosed data must be considered completely preliminary and without statistical significance, they emphasize the presence of mycotoxins in animal products. The outcomes obtained from the processed samples (bovine milk, pig liver and dry dog food) suggest the efficacy of these methods also on other food matrices, confirming the versatility and the performances of mass spectrometry, coupled with liquid chromatography, in fumonisins analysis. Moreover the results underline the need to set up a large scale monitoring in order to evaluate the presence of fumonisins in food of animal origin for human consumption.

Relevância:

60.00% 60.00%

Publicador:

Resumo:

The thesis deals with channel coding theory applied to upper layers in the protocol stack of a communication link and it is the outcome of four year research activity. A specific aspect of this activity has been the continuous interaction between the natural curiosity related to the academic blue-sky research and the system oriented design deriving from the collaboration with European industry in the framework of European funded research projects. In this dissertation, the classical channel coding techniques, that are traditionally applied at physical layer, find their application at upper layers where the encoding units (symbols) are packets of bits and not just single bits, thus explaining why such upper layer coding techniques are usually referred to as packet layer coding. The rationale behind the adoption of packet layer techniques is in that physical layer channel coding is a suitable countermeasure to cope with small-scale fading, while it is less efficient against large-scale fading. This is mainly due to the limitation of the time diversity inherent in the necessity of adopting a physical layer interleaver of a reasonable size so as to avoid increasing the modem complexity and the latency of all services. Packet layer techniques, thanks to the longer codeword duration (each codeword is composed of several packets of bits), have an intrinsic longer protection against long fading events. Furthermore, being they are implemented at upper layer, Packet layer techniques have the indisputable advantages of simpler implementations (very close to software implementation) and of a selective applicability to different services, thus enabling a better matching with the service requirements (e.g. latency constraints). Packet coding technique improvement has been largely recognized in the recent communication standards as a viable and efficient coding solution: Digital Video Broadcasting standards, like DVB-H, DVB-SH, and DVB-RCS mobile, and 3GPP standards (MBMS) employ packet coding techniques working at layers higher than the physical one. In this framework, the aim of the research work has been the study of the state-of-the-art coding techniques working at upper layer, the performance evaluation of these techniques in realistic propagation scenario, and the design of new coding schemes for upper layer applications. After a review of the most important packet layer codes, i.e. Reed Solomon, LDPC and Fountain codes, in the thesis focus our attention on the performance evaluation of ideal codes (i.e. Maximum Distance Separable codes) working at UL. In particular, we analyze the performance of UL-FEC techniques in Land Mobile Satellite channels. We derive an analytical framework which is a useful tool for system design allowing to foresee the performance of the upper layer decoder. We also analyze a system in which upper layer and physical layer codes work together, and we derive the optimal splitting of redundancy when a frequency non-selective slowly varying fading channel is taken into account. The whole analysis is supported and validated through computer simulation. In the last part of the dissertation, we propose LDPC Convolutional Codes (LDPCCC) as possible coding scheme for future UL-FEC application. Since one of the main drawbacks related to the adoption of packet layer codes is the large decoding latency, we introduce a latency-constrained decoder for LDPCCC (called windowed erasure decoder). We analyze the performance of the state-of-the-art LDPCCC when our decoder is adopted. Finally, we propose a design rule which allows to trade-off performance and latency.

Relevância:

60.00% 60.00%

Publicador:

Resumo:

Complex Networks analysis turn out to be a very promising field of research, testified by many research projects and works that span different fields. Those analysis have been usually focused on characterize a single aspect of the system and a study that considers many informative axes along with a network evolve is lacking. We propose a new multidimensional analysis that is able to inspect networks in the two most important dimensions, space and time. To achieve this goal, we studied them singularly and investigated how the variation of the constituting parameters drives changes to the network as a whole. By focusing on space dimension, we characterized spatial alteration in terms of abstraction levels. We proposed a novel algorithm that, by applying a fuzziness function, can reconstruct networks under different level of details. We verified that statistical indicators depend strongly on the granularity with which a system is described and on the class of networks. We keep fixed the space axes and we isolated the dynamics behind networks evolution process. We detected new instincts that trigger social networks utilization and spread the adoption of novel communities. We formalized this enhanced social network evolution by adopting special nodes (called sirens) that, thanks to their ability to attract new links, were able to construct efficient connection patterns. We simulated the dynamics of the system by considering three well-known growth models. Applying this framework to real and synthetic networks, we showed that the sirens, even when used for a limited time span, effectively shrink the time needed to get a network in mature state. In order to provide a concrete context of our findings, we formalized the cost of setting up such enhancement and provided the best combinations of system's parameters, such as number of sirens, time span of utilization and attractiveness.

Relevância:

60.00% 60.00%

Publicador:

Resumo:

The new generation of multicore processors opens new perspectives for the design of embedded systems. Multiprocessing, however, poses new challenges to the scheduling of real-time applications, in which the ever-increasing computational demands are constantly flanked by the need of meeting critical time constraints. Many research works have contributed to this field introducing new advanced scheduling algorithms. However, despite many of these works have solidly demonstrated their effectiveness, the actual support for multiprocessor real-time scheduling offered by current operating systems is still very limited. This dissertation deals with implementative aspects of real-time schedulers in modern embedded multiprocessor systems. The first contribution is represented by an open-source scheduling framework, which is capable of realizing complex multiprocessor scheduling policies, such as G-EDF, on conventional operating systems exploiting only their native scheduler from user-space. A set of experimental evaluations compare the proposed solution to other research projects that pursue the same goals by means of kernel modifications, highlighting comparable scheduling performances. The principles that underpin the operation of the framework, originally designed for symmetric multiprocessors, have been further extended first to asymmetric ones, which are subjected to major restrictions such as the lack of support for task migrations, and later to re-programmable hardware architectures (FPGAs). In the latter case, this work introduces a scheduling accelerator, which offloads most of the scheduling operations to the hardware and exhibits extremely low scheduling jitter. The realization of a portable scheduling framework presented many interesting software challenges. One of these has been represented by timekeeping. In this regard, a further contribution is represented by a novel data structure, called addressable binary heap (ABH). Such ABH, which is conceptually a pointer-based implementation of a binary heap, shows very interesting average and worst-case performances when addressing the problem of tick-less timekeeping of high-resolution timers.

Relevância:

60.00% 60.00%

Publicador:

Resumo:

The ingestion of a meal evokes a series of digestive processes, which consist of the essential functions of the digestive system: food transport, secretory activity, absorption of nutrients and the expulsion of undigested residues do not absorbed. The gastrointestinal chemosensitivity is characterized by cellular elements of the endocrine gastrointestinal mucosa and nerve fibers, in particular of vagal nature. A wide range of mediators endocrine and/or paracrine can be released from various endocrine cells in response to nutrients in the diet. These hormones, in addition to their direct activity, act through specific receptors activating some of the most important functions in the control of energy intake and energy homeostasis in the body. For integration of this complex system of control of gastrointestinal chemosensitivity, recent evidence demonstrates the presence of taste receptors (TR) belonging to the family of G proteins coupled receptor expressed in the mucosa of the gastrointestinal tract of different mammals and human. This thesis is divided into several research projects that have been conceived in order to clarify the relationship between TR and nutrients. To define this relationship I have used various scientific approaches, which have gone on to evaluate changes in signal molecules of TR, in particular of the α-transducin in the fasting state and after refeeding with standard diet in the gastrointestinal tract of the pig, the mapping of the same molecule signal in the gastrointestinal tract of fish (Dicentrarchus labrax), the signaling pathway of bitter TR in the STC-1 endocrine cell line and finally the involvement of bitter TR in particular of T2R38 in patients with an excessive caloric intake. The results showed how there is a close correlation between nutrients, TR and hormonal release and how they are useful both in taste perception but also likely to be involved in chronic diseases such as obesity.

Relevância:

60.00% 60.00%

Publicador:

Resumo:

In recent years the need for the design of more sustainable processes and the development of alternative reaction routes to reduce the environmental impact of the chemical industry has gained vital importance. Main objectives especially regard the use of renewable raw materials, the exploitation of alternative energy sources, the design of inherently safe processes and of integrated reaction/separation technologies (e.g. microreactors and membranes), the process intensification, the reduction of waste and the development of new catalytic pathways. The present PhD thesis reports results derived during a three years research period at the School of Chemical Sciences of Alma Mater Studiorum-University of Bologna, Dept. of Industrial Chemistry and Materials (now Dept. of Industrial Chemistry “Toso Montanari”), under the supervision of Prof. Fabrizio Cavani (Catalytic Processes Development Group). Three research projects in the field of heterogeneous acid catalysis focused on potential industrial applications were carried out. The main project, regarding the conversion of lignocellulosic materials to produce monosaccharides (important intermediates for production of biofuels and bioplatform molecules) was financed and carried out in collaboration with the Italian oil company eni S.p.A. (Istituto eni Donegani-Research Center for non-Conventional Energies, Novara, Italy) The second and third academic projects dealt with the development of green chemical processes for fine chemicals manufacturing. In particular, (a) the condensation reaction between acetone and ammonia to give triacetoneamine (TAA), and (b) the Friedel-Crafts acylation of phenol with benzoic acid were investigated.

Relevância:

60.00% 60.00%

Publicador:

Resumo:

The research work reported in this Thesis was held along two main lines of research. The first and main line of research is about the synthesis of heteroaromatic compounds with increasing steric hindrance, with the aim of preparing stable atropisomers. The main tools used for the study of these dynamic systems, as described in the Introduction, are DNMR, coupled with line shape simulation and DFT calculations, aimed to the conformational analysis for the prediction of the geometries and energy barriers to the trasition states. This techniques have been applied to the research projects about: • atropisomers of arylmaleimides; • atropisomers of 4-arylpyrazolo[3,4-b]pyridines; • study of the intramolecular NO2/CO interaction in solution; • study on 2-arylpyridines. Parallel to the main project, in collaboration with other groups, the research line about determination of the absolute configuration was followed. The products, deriving form organocatalytic reactions, in many cases couldn’t be analyzed by means of X-Ray diffraction, making necessary the development of a protocol based on spectroscopic methodologies: NMR, circular dichroism and computational tools (DFT, TD-DFT) have been implemented in this scope. In this Thesis are reported the determination of the absolute configuration of: • substituted 1,2,3,4-tetrahydroquinolines; • compounds from enantioselective Friedel-Crafts alkylation-acetalization cascade of naphthols with α,β-unsaturated cyclic ketones; • substituted 3,4-annulated indoles.

Relevância:

60.00% 60.00%

Publicador:

Resumo:

El objetivo de la presente investigación, el catálogo y estudio de las gramáticas de italiano destinadas a hispanohablantes de los siglos XVIII y XIX, se encuadra en el macrosector gramaticográfico de la historiografía lingüística, en el cual el estudio de las gramáticas de las lenguas dirigidas a hablantes nativos y a hablantes extranjeros, con los consiguientes cruces y trasvases de tradiciones gramaticales, es de significativo interés como destacan: (i) las tesis doctorales defendidas en los últimos quince años; (ii) los proyectos de investigación dirigidos y coordinados por prestigiosos estudiosos del sector; (iii) los congresos organizados para destacar y compartir las principales actualizaciones en torno a los estudios gramaticográficos; y (iv) las publicaciones que surgen de los tres puntos anteriores. El estudio presenta dos partes centrales: la primera (constituida por los capítulos 2 y 3) es la de catálogo y estudio de las diecinueve gramáticas que conforman el corpus en base a ocho áreas descriptivas (1. información catalográfica, 2. autor, 3. editor, 4. hiperestructura, 5. elementos peritextuales, gramaticales y didácticos, 6. variedad de textos y su secuencia didáctica, 7. caracterización, fuentes e influencias, y 8. localización); la segunda (capítulo 4) es la de estudio gramaticográfico de conjunto de los datos más relevantes de las areas de estudio utilizadas en las dos primeras partes. De este modo, daremos un panorama de conjunto sobre (i) la cronología de las obras y sus ediciones y rempresiones; (ii) la nacionalidad, profesión, condición religiosa, etc. de autores; (iii) la geografía de ediciones y editores; (iv) la descripción hiperestructural de las obras; (v) la estructura de los elementos peritextuales; (vi) las partes gramaticales y elementos que las componen; (vii) el verbo: definiciones y paradigma verbal; (vii) los elementos didácticos; (viii) las líneas de descripción gramatical; (ix) la localización de las gramáticas en las bibliotecas españolas.

Relevância:

60.00% 60.00%

Publicador:

Resumo:

The thesis is divided into two main parts. In the first one organocatalysis is briefly introduced. Then, new enantiopure trityl pyrrolidines modified with an ionic tag are described. All the catalysts are tested in the benchmark Michael addition reaction to prove their activity and stereoselectivity. In the second part, photocatalysis is first introduced. Then, four different research projects are described. At first, the construction of a hybrid metal-organo-photoredox catalyst is described. The hybrid photocatalysts obtained were employed in the benchmark photoredox alkylation of aldehydes. Then, the use of visible light and a photocatalytic system for the cyclization of iodoaryl vinyl derivatives to tetrahydroquinoline structures is described. In addition, the reaction can also be performed using flow-chemistry. Finally, a mechanistic proposal based on some mechanistic studies is described. Third, a new photoredox catalyzed transformation for the synthesis of 2,3-dihydrofurans is reported. Depending on the involved starting materials, different pathways have arisen. A mechanistic proposal based on reported literatures and experimental data is described. At last, a new photoredox catalyzed transformation for the synthesis of 2-aminofurans is described. Electrophilic radical addition on allenamides and subsequential intramolecular cyclization are exploited. The reaction proceeds under very mild conditions and in 2-aminofurans are obtained in good to high yield. It represents one of the few applications of allenamides in photoredox catalysis. A mechanistic proposal is described. Finally, preliminary investigations on the applicability of the developed transformation under flow chemistry conditions.

Relevância:

60.00% 60.00%

Publicador:

Resumo:

The present Thesis reports on the various research projects to which I have contributed during my PhD period, working with several research groups, and whose results have been communicated in a number of scientific publications. The main focus of my research activity was to learn, test, exploit and extend the recently developed vdW-DFT (van der Waals corrected Density Functional Theory) methods for computing the structural, vibrational and electronic properties of ordered molecular crystals from first principles. A secondary, and more recent, research activity has been the analysis with microelectrostatic methods of Molecular Dynamics (MD) simulations of disordered molecular systems. While only very unreliable methods based on empirical models were practically usable until a few years ago, accurate calculations of the crystal energy are now possible, thanks to very fast modern computers and to the excellent performance of the best vdW-DFT methods. Accurate energies are particularly important for describing organic molecular solids, since they often exhibit several alternative crystal structures (polymorphs), with very different packing arrangements but very small energy differences. Standard DFT methods do not describe the long-range electron correlations which give rise to the vdW interactions. Although weak, these interactions are extremely sensitive to the packing arrangement, and neglecting them used to be a problem. The calculations of reliable crystal structures and vibrational frequencies has been made possible only recently, thanks to development of some good representations of the vdW contribution to the energy (known as “vdW corrections”).

Relevância:

60.00% 60.00%

Publicador:

Resumo:

Bifidobacteria is amongst one of the health promoting bacteria. The role of this important probiotic genera can be elucidated by understanding its genome. Comparative analysis of the whole genus of these bacteria can reveal their adaptation to a diverse host range. This study comprises of four research projects. In the first study, a reference library for genus Bifidobacterium was prepared. The core genes in each genus were selected based on a newly proposed statistical definition of core genome. Comparative analysis of Bifidobacterium with another probiotic genus Lactobacillus revealed the metabolic characteristics of genus Bifidobacterium. The second study investigated the immunomodulatory role of a B. bifidum strain TMC3115. The analysis of TMC3115 provided insights into its extracellular structures which might have their role in host interaction and immunomodulation. The study highlighted the variability among these genomes just not on species level but also on strain level in terms of host interaction. The last two studies aim to inspect the relationship between bifidobacteria and its host diet. Bifidobacteria, are both host- and niche-specific. Such adaptation of bifidobacterial species is considered relevant to the intestinal microecosystem and hosts’ oligosaccharides. Many species should have co-evolved with their hosts, but the phylogeny of Bifidobacterium is dissimilar to that of host animals. The discrepancy could be linked to the niche-specific evolution due to hosts’ dietary carbohydrates. The distribution of carbohydrate-active enzymes, in particular glycoside hydrolases (GHs) that metabolize unique oligosaccharides was examined. When bifidobacterial species were classified by their distribution of GH genes, five groups arose according to their hosts’ feeding behaviour. The distribution of GH genes was only weakly associated with the phylogeny of the host animals or with genomic features such as genome size. Thus, the hosts’ dietary pattern is the key determinant of the distribution and evolution of GH genes.

Relevância:

60.00% 60.00%

Publicador:

Resumo:

The data presented in this thesis was generated using molecular biology, protein chemistry and X-ray crystallography techniques. However, while the methodologies employed are essentially the same, the research work presented here refers to two different proteins, which are part of different research projects in the laboratory. For this reason, the content of this thesis is divided in two independent parts, each provided with an introduction and a general overview of the research topic and state-ofthe- art, a materials and methods section discussing the techniques used and the protocols followed, and a section where the results are presented and discussed in detail. The first half of the thesis deals with the structural characterization of the complex between human E-cadherin and three different small molecule potential inhibitors identified via a fragment-based drug discovery (FBDD) screening campaign that was conducted using a library of commercially available small fluorinated chemical fragments. For this screening phase, we used 19F-NMR as readout. The NMR experiments were done by our collaborator Dr. Marina Veronesi at the D3 PharmaChemistry division of the Italian Institute of Technology (IIT) in Genova (Italy). Functional cell adhesion assays to validate the inhibitory effects of the fragments thus identified were carried out in collaboration with Prof. Frédéric André at the University of Marseille (France). The second half of the thesis describes the structural characterization of Plasmodium falciparum Choline Kinase (PfChoK), an important pharmaceutical target in the fight against malaria, as well as the biochemical characterization of a library of potential inhibitors of PfChoK. These inhibitors were synthetized in the group of Prof. Luisa Carlota López-Cara at the Department of Pharmaceutical and Organic Chemistry of the University of Granada (Spain) in the framework of an ongoing collaboration between the two groups.

Relevância:

60.00% 60.00%

Publicador:

Resumo:

Solid state engineered materials have proven to be useful and suitable tools in the quest of new materials. In this thesis different crystalline compounds were synthesized to provide more sustainable products for different applications, as in cosmetics or in agrochemistry, to propose pollutants removal strategy or to obtain materials for electrocatalysis. Therefore, the research projects presented here can be divided into three main topics: (i) sustainable preparation of solid materials of widely used active ingredients aimed at the reduction of their occurrence in the natural environment. The systems studied in this section are cyclodextrins host-guest compounds, obtained via mechanochemical and slurry synthesis. The first chemicals studied are sunscreens inclusion complexes, that proved to have enhanced photostability and desired photoprotection. The same synthetic methods were applied to obtain inclusion complexes of bentazon, a herbicide often found to leach in groundwaters. The resulting products showed to have desired water solubility properties. The same herbicide was also adsorbed on amorphous calcium phosphate nanoparticles, to obtain a biocompatible formulation of this agrochemical. This herbicide could benefit by the adsorption on nanoparticles for what concerns its kinetic release in different media as well as its photostability. (ii) Sustainable synthesis of co-crystals based on polycyclic aromatic hydrocarbons, for the proposal of a sequestering method with a resulting material with enhanced properties. The co-crystallization via mechanochemical means proved that these pollutants can be sequestered via simple solvent-free synthesis and the obtained materials present better photochemical properties when compared to the starting co-formers. (iii) Crystallization from mild solvents of nanosized materials useful for the application in electrocatalysis. The study of compounds based on nickel and cobalt metal ions resulted in the obtainment of 2D and 1D coordination polymers. Moreover, solid solutions were obtained. These crystals showed layered structures and, according to preliminary results, they can be exfoliated.