5 resultados para Research Methodology, Input-Output Approach, Student Experience Of Learning, Learning Inventory

em AMS Tesi di Dottorato - Alm@DL - Università di Bologna


Relevância:

100.00% 100.00%

Publicador:

Resumo:

The market’s challenges bring firms to collaborate with other organizations in order to create Joint Ventures, Alliances and Consortia that are defined as “Interorganizational Networks” (IONs) (Provan, Fish and Sydow; 2007). Some of these IONs are managed through a shared partecipant governance (Provan and Kenis, 2008): a team composed by entrepreneurs and/or directors of each firm of an ION. The research is focused on these kind of management teams and it is based on an input-process-output model: some input variables (work group’s diversity, intra-team's friendship network density) have a direct influence on the process (team identification, shared leadership, interorganizational trust, team trust and intra-team's communication network density), which influence some team outputs, individual innovation behaviors and team effectiveness (team performance, work group satisfaction and ION affective commitment). Data was collected on a sample of 101 entrepreneurs grouped in 28 ION’s government teams and the research hypotheses are tested trough the path analysis and the multilevel models. As expected trust in team and shared leadership are positively and directly related to team effectiveness while team identification and interorganizational trust are indirectly related to the team outputs. The friendship network density among the team’s members has got positive effects on the trust in team and on the communication network density, and also, through the communication network density it improves the level of the teammates ION affective commitment. The shared leadership and its effects on the team effectiveness are fostered from higher level of team identification and weakened from higher level of work group diversity, specifically gender diversity. Finally, the communication network density and shared leadership at the individual level are related to the frequency of individual innovative behaviors. The dissertation’s results give a wider and more precise indication about the management of interfirm network through “shared” form of governance.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

The research project aims to improve the Design for Additive Manufacturing of metal components. Firstly, the scenario of Additive Manufacturing is depicted, describing its role in Industry 4.0 and in particular focusing on Metal Additive Manufacturing technologies and the Automotive sector applications. Secondly, the state of the art in Design for Additive Manufacturing is described, contextualizing the methodologies, and classifying guidelines, rules, and approaches. The key phases of product design and process design to achieve lightweight functional designs and reliable processes are deepened together with the Computer-Aided Technologies to support the approaches implementation. Therefore, a general Design for Additive Manufacturing workflow based on product and process optimization has been systematically defined. From the analysis of the state of the art, the use of a holistic approach has been considered fundamental and thus the use of integrated product-process design platforms has been evaluated as a key element for its development. Indeed, a computer-based methodology exploiting integrated tools and numerical simulations to drive the product and process optimization has been proposed. A validation of CAD platform-based approaches has been performed, as well as potentials offered by integrated tools have been evaluated. Concerning product optimization, systematic approaches to integrate topology optimization in the design have been proposed and validated through product optimization of an automotive case study. Concerning process optimization, the use of process simulation techniques to prevent manufacturing flaws related to the high thermal gradients of metal processes is developed, providing case studies to validate results compared to experimental data, and application to process optimization of an automotive case study. Finally, an example of the product and process design through the proposed simulation-driven integrated approach is provided to prove the method's suitability for effective redesigns of Additive Manufacturing based high-performance metal products. The results are then outlined, and further developments are discussed.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

Liver transplantation is the only definitive treatment for transthyretin amyloidosis, with an excellent 5-year survival in endemic countries where the Met30 mutation is predominant. We report our experience of liver transplantation for transthyretin amyloidosis. We reviewed the clinical records of 17 transplanted patients (11 males, 6 females; age at liver transplant: 45.7±11.7 years). We had a wide spectrum of non-Met30 mutations (52.9%), with a predominance of Gln89 (23.5%). Five-year survival after transplantation was 43.8%; at multivariate analysis, both non-Met30 mutations (HR 17.3, 95% CI 1.03-291.7) and modified BMI (HR 0.50, 95% CI 0.29-0.87) showed significant and independent prognostic roles (P=0.048 and P=0.015, respectively). Five out of the 9 non-Met30 carriers received combined heart transplantation because of severe cardiomyopathy; they showed a trend towards a better prognosis vs. the 4 patients who did not receive combined heart transplantation (although not statistically significant; P=0.095). At follow-up, no significant improvement of transthyretin amyloidosis manifestations was observed. The results of liver transplantation for transthyretin amyloidosis in our population are poorer than those reported in the literature probably because of the high prevalence of non-Met30 mutations.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

DI Diesel engine are widely used both for industrial and automotive applications due to their durability and fuel economy. Nonetheless, increasing environmental concerns force that type of engine to comply with increasingly demanding emission limits, so that, it has become mandatory to develop a robust design methodology of the DI Diesel combustion system focused on reduction of soot and NOx simultaneously while maintaining a reasonable fuel economy. In recent years, genetic algorithms and CFD three-dimensional combustion simulations have been successfully applied to that kind of problem. However, combining GAs optimization with actual CFD three-dimensional combustion simulations can be too onerous since a large number of calculations is usually needed for the genetic algorithm to converge, resulting in a high computational cost and, thus, limiting the suitability of this method for industrial processes. In order to make the optimization process less time-consuming, CFD simulations can be more conveniently used to generate a training set for the learning process of an artificial neural network which, once correctly trained, can be used to forecast the engine outputs as a function of the design parameters during a GA optimization performing a so-called virtual optimization. In the current work, a numerical methodology for the multi-objective virtual optimization of the combustion of an automotive DI Diesel engine, which relies on artificial neural networks and genetic algorithms, was developed.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

Landslide hazard and risk are growing as a consequence of climate change and demographic pressure. Land‐use planning represents a powerful tool to manage this socio‐economic problem and build sustainable and landslide resilient communities. Landslide inventory maps are a cornerstone of land‐use planning and, consequently, their quality assessment represents a burning issue. This work aimed to define the quality parameters of a landslide inventory and assess its spatial and temporal accuracy with regard to its possible applications to land‐use planning. In this sense, I proceeded according to a two‐steps approach. An overall assessment of the accuracy of data geographic positioning was performed on four case study sites located in the Italian Northern Apennines. The quantification of the overall spatial and temporal accuracy, instead, focused on the Dorgola Valley (Province of Reggio Emilia). The assessment of spatial accuracy involved a comparison between remotely sensed and field survey data, as well as an innovative fuzzylike analysis of a multi‐temporal landslide inventory map. Conversely, long‐ and short‐term landslide temporal persistence was appraised over a period of 60 years with the aid of 18 remotely sensed image sets. These results were eventually compared with the current Territorial Plan for Provincial Coordination (PTCP) of the Province of Reggio Emilia. The outcome of this work suggested that geomorphologically detected and mapped landslides are a significant approximation of a more complex reality. In order to convey to the end‐users this intrinsic uncertainty, a new form of cartographic representation is needed. In this sense, a fuzzy raster landslide map may be an option. With regard to land‐use planning, landslide inventory maps, if appropriately updated, confirmed to be essential decision‐support tools. This research, however, proved that their spatial and temporal uncertainty discourages any direct use as zoning maps, especially when zoning itself is associated to statutory or advisory regulations.