2 resultados para Reproducative of mullet,

em AMS Tesi di Dottorato - Alm@DL - Università di Bologna


Relevância:

30.00% 30.00%

Publicador:

Resumo:

The quality of fish products is indispensably linked to the freshness of the raw material modulated by appropriate manipulation and storage conditions, specially the storage temperature after catch. The purpose of the research presented in this thesis, which was largely conducted in the context of a research project funded by Italian Ministry of Agricultural, Food and Forestry Policies (MIPAAF), concerned the evaluation of the freshness of farmed and wild fish species, in relation to different storage conditions, under ice (0°C) or at refrigeration temperature (4°C). Several specimens of different species, bogue (Boops boops), red mullet (Mullus barbatus), sea bream (Sparus aurata) and sea bass (Dicentrarchus labrax), during storage, under the different temperature conditions adopted, have been examined. The assessed control parameters were physical (texture, through the use of a dynamometer; visual quality using a computer vision system (CVS)), chemical (through footprint metabolomics 1H-NMR) and sensory (Quality Index Method (QIM). Microbiological determinations were also carried out on the species of hake (Merluccius merluccius). In general obtained results confirmed that the temperature of manipulation/conservation is a key factor in maintaining fish freshness. NMR spectroscopy showed to be able to quantify and evaluate the kinetics for unselected compounds during fish degradation, even a posteriori. This can be suitable for the development of new parameters related to quality and freshness. The development of physical methods, particularly the image analysis performed by computer vision system (CVS), for the evaluation of fish degradation, is very promising. Among CVS parameters, skin colour, presence and distribution of gill mucus, and eye shape modification evidenced a high sensibility for the estimation of fish quality loss, as a function of the adopted storage conditions. Particularly the eye concavity index detected on fish eye showed a high positive correlation with total QIM score.

Relevância:

30.00% 30.00%

Publicador:

Resumo:

Metabolomics has established itself as a discipline that can offer a unique point of view on how a technological treatment could impact on the charactersitics of a food. Even more, the same analytical platforms necessary for the purpose can also effectively unravel intricate interactions between such food and human health upon consumption. This PhD thesis investigates the application of metabolomics in understanding the impact of technological treatments on food and their subsequent effects on human health, utilizing 1H-NMR as the analytical platform. The study involves the development of standard operating procedures (SOPs) to ensure a fast and stable preparation of seafood samples, incorporating novel algorithms to enhance the accuracy of metabolome profiles. To gain insight on how metabolomics can allow exploring the effects of a technological treatment on a food, we performed three sets of experiments to investigate the application of metabolomics in studying the impact of high hydrostatic pressure (HHP) treatment on seafood metabolome during storage. The first experiment employs untargeted metabolomic analysis on chill-stored rose shrimp, revealing significant post-HHP treatment metabolic alterations and mechanisms. The investigation is extended to grey mullet in the second experiment, utilizing both untargeted and targeted metabolomic analyses to account for matrix-related effects. The third experiment assesses the targeted metabolome of striped prawns, showing that HHP significantly influences metabolic pathways, positively impacting freshness and taste through alterations in related metabolites. Shifting focus to the effects of food on humans, the study explores the impact of multistrain probiotics on cirrhosis patients using 1H-NMR. The platform reveals notable alterations in glutamine/glutamate metabolism, enhancing the patients' ammonia detoxification capacity. This research underscores the potential of metabolomics in uncovering intricate interactions between technological treatments, food, and human health, providing valuable insights for both the food industry and healthcare interventions.