5 resultados para Relevance Models

em AMS Tesi di Dottorato - Alm@DL - Università di Bologna


Relevância:

40.00% 40.00%

Publicador:

Resumo:

One important metaphor, referred to biological theories, used to investigate on organizational and business strategy issues is the metaphor about heredity; an area requiring further investigation is the extent to which the characteristics of blueprints inherited from the parent, helps in explaining subsequent development of the spawned ventures. In order to shed a light on the tension between inherited patterns and the new trajectory that may characterize spawned ventures’ development we propose a model aimed at investigating which blueprints elements might exert an effect on business model design choices and to which extent their persistence (or abandonment) determines subsequent business model innovation. Under the assumption that academic and corporate institutions transmit different genes to their spin-offs, we hence expect to have heterogeneity in elements that affect business model design choices and its subsequent evolution. This is the reason why we carry on a twofold analysis in the biotech (meta)industry: under a multiple-case research design, business model and especially its fundamental design elements and themes scholars individuated to decompose the construct, have been thoroughly analysed. Our purpose is to isolate the dimensions of business model that may have been the object of legacy and the ones along which an experimentation and learning process is more likely to happen, bearing in mind that differences between academic and corporate might not be that evident as expected, especially considering that business model innovation may occur.

Relevância:

30.00% 30.00%

Publicador:

Resumo:

Traditional software engineering approaches and metaphors fall short when applied to areas of growing relevance such as electronic commerce, enterprise resource planning, and mobile computing: such areas, in fact, generally call for open architectures that may evolve dynamically over time so as to accommodate new components and meet new requirements. This is probably one of the main reasons that the agent metaphor and the agent-oriented paradigm are gaining momentum in these areas. This thesis deals with the engineering of complex software systems in terms of the agent paradigm. This paradigm is based on the notions of agent and systems of interacting agents as fundamental abstractions for designing, developing and managing at runtime typically distributed software systems. However, today the engineer often works with technologies that do not support the abstractions used in the design of the systems. For this reason the research on methodologies becomes the basic point in the scientific activity. Currently most agent-oriented methodologies are supported by small teams of academic researchers, and as a result, most of them are in an early stage and still in the first context of mostly \academic" approaches for agent-oriented systems development. Moreover, such methodologies are not well documented and very often defined and presented only by focusing on specific aspects of the methodology. The role played by meta- models becomes fundamental for comparing and evaluating the methodologies. In fact a meta-model specifies the concepts, rules and relationships used to define methodologies. Although it is possible to describe a methodology without an explicit meta-model, formalising the underpinning ideas of the methodology in question is valuable when checking its consistency or planning extensions or modifications. A good meta-model must address all the different aspects of a methodology, i.e. the process to be followed, the work products to be generated and those responsible for making all this happen. In turn, specifying the work products that must be developed implies dening the basic modelling building blocks from which they are built. As a building block, the agent abstraction alone is not enough to fully model all the aspects related to multi-agent systems in a natural way. In particular, different perspectives exist on the role that environment plays within agent systems: however, it is clear at least that all non-agent elements of a multi-agent system are typically considered to be part of the multi-agent system environment. The key role of environment as a first-class abstraction in the engineering of multi-agent system is today generally acknowledged in the multi-agent system community, so environment should be explicitly accounted for in the engineering of multi-agent system, working as a new design dimension for agent-oriented methodologies. At least two main ingredients shape the environment: environment abstractions - entities of the environment encapsulating some functions -, and topology abstractions - entities of environment that represent the (either logical or physical) spatial structure. In addition, the engineering of non-trivial multi-agent systems requires principles and mechanisms for supporting the management of the system representation complexity. These principles lead to the adoption of a multi-layered description, which could be used by designers to provide different levels of abstraction over multi-agent systems. The research in these fields has lead to the formulation of a new version of the SODA methodology where environment abstractions and layering principles are exploited for en- gineering multi-agent systems.

Relevância:

30.00% 30.00%

Publicador:

Resumo:

The determination of skeletal loading conditions in vivo and their relationship to the health of bone tissues, remain an open question. Computational modeling of the musculoskeletal system is the only practicable method providing a valuable approach to muscle and joint loading analyses, although crucial shortcomings limit the translation process of computational methods into the orthopedic and neurological practice. A growing attention focused on subject-specific modeling, particularly when pathological musculoskeletal conditions need to be studied. Nevertheless, subject-specific data cannot be always collected in the research and clinical practice, and there is a lack of efficient methods and frameworks for building models and incorporating them in simulations of motion. The overall aim of the present PhD thesis was to introduce improvements to the state-of-the-art musculoskeletal modeling for the prediction of physiological muscle and joint loads during motion. A threefold goal was articulated as follows: (i) develop state-of-the art subject-specific models and analyze skeletal load predictions; (ii) analyze the sensitivity of model predictions to relevant musculotendon model parameters and kinematic uncertainties; (iii) design an efficient software framework simplifying the effort-intensive phases of subject-specific modeling pre-processing. The first goal underlined the relevance of subject-specific musculoskeletal modeling to determine physiological skeletal loads during gait, corroborating the choice of full subject-specific modeling for the analyses of pathological conditions. The second goal characterized the sensitivity of skeletal load predictions to major musculotendon parameters and kinematic uncertainties, and robust probabilistic methods were applied for methodological and clinical purposes. The last goal created an efficient software framework for subject-specific modeling and simulation, which is practical, user friendly and effort effective. Future research development aims at the implementation of more accurate models describing lower-limb joint mechanics and musculotendon paths, and the assessment of an overall scenario of the crucial model parameters affecting the skeletal load predictions through probabilistic modeling.

Relevância:

30.00% 30.00%

Publicador:

Resumo:

In recent years, it has become evident that the role of mitochondria in the metabolic rewiring is essential for cancer development and progression. The metabolic profile during tumorigenesis has been performed mainly in traditional 2D cell models, including cell lines of various lineages and phenotypes. Although useful in many ways, their relevance can be often debatable, as they lack the interactions between different cells of the tumour microenvironment and/or interaction with the extracellular matrix 1,2. Improved models are now being developed using 3D cell culture technology, contributing with increased physiological relevance 3,4. In this work, we improved a method for the generation of 3D models from healthy and tumour colon tissue, based on organoid technology, and performed their molecular and biochemical characterization and validation. Further, in-plate cryopreservation was applied to these models, and optimal results were obtained in terms of cell viability and functionality of the cryopreserved models. We also cryopreserved colon fibroblasts with the aim to introduce them in a co-culture cryopreserved model with organoids. This technology allows the conversion of cell models into “plug and play” formats. Therefore, cryopreservation in-plate facilitates the accessibility of specialized cell models to cell-based research and application, in cases where otherwise such specialized models would be out of reach. Finally, we briefly explored the field of bioprinting, by testing a new matrix to support the growth of colon tumour organoids, which revealed promising preliminary results. To facilitate the reader, we organized this thesis into chapters, divided by the main points of work which include development, characterization and validation of the model, commercial output, and associated applications. Each chapter has a brief introduction, followed by results and discussion and a final conclusion. The thesis has also a general discussion and conclusion section in the end, which covers the main results obtained during this work.