5 resultados para Regulatory T-cell
em AMS Tesi di Dottorato - Alm@DL - Università di Bologna
Resumo:
Solid organ transplantation (SOT) is considered the treatment of choice for many end-stage organ diseases. Thus far, short term results are excellent, with patient survival rates greater than 90% one year post-surgery, but there are several problems with the long term acceptance and use of immunosuppressive drugs. Hematopoietic Stem Cells Transplantation (HSCT) concerns the infusion of haematopoietic stem cells to re-establish acquired and congenital disorders of the hematopoietic system. The main side effect is the Graft versus Host Disease (GvHD) where donor T cells can cause pathology involving the damage of host tissues. Patients undergoing acute or chronic GvHD receive immunosuppressive regimen that is responsible for several side effects. The use of immunosuppressive drugs in the setting of SOT and GvHD has markedly reduced the incidence of acute rejection and the tissue damage in GvHD however, the numerous adverse side effects observed boost the development of alternative strategies to improve the long-term outcome. To this effect, the use of CD4+CD25+FOXP3+ regulatory T cells (Treg) as a cellular therapy is an attractive approach for autoimmunity disease, GvHD and limiting immune responses to allograft after transplantation. Treg have a pivotal role in maintaining peripheral immunological tolerance, by preventing autoimmunity and chronic inflammation. Results of my thesis provide the characterization and cell processing of Tregs from healthy controls and patients in waiting list for liver transplantation, followed by the development of an efficient expansion-protocol and the investigation of the impact of the main immunosuppressive drugs on viability, proliferative capacity and function of expanded cells after expansion. The conclusion is that ex vivo expansion is necessary to infuse a high Treg dose and although many other factors in vivo can contribute to the success of Treg therapy, the infusion of Tregs during the administration of the highest dose of immunosuppressants should be carefully considered.
Resumo:
The subject of this Ph.D. research thesis is the development and application of multiplexed analytical methods based on bioluminescent whole-cell biosensors. One of the main goals of analytical chemistry is multianalyte testing in which two or more analytes are measured simultaneously in a single assay. The advantages of multianalyte testing are work simplification, high throughput, and reduction in the overall cost per test. The availability of multiplexed portable analytical systems is of particular interest for on-field analysis of clinical, environmental or food samples as well as for the drug discovery process. To allow highly sensitive and selective analysis, these devices should combine biospecific molecular recognition with ultrasensitive detection systems. To address the current need for rapid, highly sensitive and inexpensive devices for obtaining more data from each sample,genetically engineered whole-cell biosensors as biospecific recognition element were combined with ultrasensitive bioluminescence detection techniques. Genetically engineered cell-based sensing systems were obtained by introducing into bacterial, yeast or mammalian cells a vector expressing a reporter protein whose expression is controlled by regulatory proteins and promoter sequences. The regulatory protein is able to recognize the presence of the analyte (e.g., compounds with hormone-like activity, heavy metals…) and to consequently activate the expression of the reporter protein that can be readily measured and directly related to the analyte bioavailable concentration in the sample. Bioluminescence represents the ideal detection principle for miniaturized analytical devices and multiplexed assays thanks to high detectability in small sample volumes allowing an accurate signal localization and quantification. In the first chapter of this dissertation is discussed the obtainment of improved bioluminescent proteins emitting at different wavelenghts, in term of increased thermostability, enhanced emission decay kinetic and spectral resolution. The second chapter is mainly focused on the use of these proteins in the development of whole-cell based assay with improved analytical performance. In particular since the main drawback of whole-cell biosensors is the high variability of their analyte specific response mainly caused by variations in cell viability due to aspecific effects of the sample’s matrix, an additional bioluminescent reporter has been introduced to correct the analytical response thus increasing the robustness of the bioassays. The feasibility of using a combination of two or more bioluminescent proteins for obtaining biosensors with internal signal correction or for the simultaneous detection of multiple analytes has been demonstrated by developing a dual reporter yeast based biosensor for androgenic activity measurement and a triple reporter mammalian cell-based biosensor for the simultaneous monitoring of two CYP450 enzymes activation, involved in cholesterol degradation, with the use of two spectrally resolved intracellular luciferases and a secreted luciferase as a control for cells viability. In the third chapter is presented the development of a portable multianalyte detection system. In order to develop a portable system that can be used also outside the laboratory environment even by non skilled personnel, cells have been immobilized into a new biocompatible and transparent polymeric matrix within a modified clear bottom black 384 -well microtiter plate to obtain a bioluminescent cell array. The cell array was placed in contact with a portable charge-coupled device (CCD) light sensor able to localize and quantify the luminescent signal produced by different bioluminescent whole-cell biosensors. This multiplexed biosensing platform containing whole-cell biosensors was successfully used to measure the overall toxicity of a given sample as well as to obtain dose response curves for heavy metals and to detect hormonal activity in clinical samples (PCT/IB2010/050625: “Portable device based on immobilized cells for the detection of analytes.” Michelini E, Roda A, Dolci LS, Mezzanotte L, Cevenini L , 2010). At the end of the dissertation some future development steps are also discussed in order to develop a point of care (POCT) device that combine portability, minimum sample pre-treatment and highly sensitive multiplexed assays in a short assay time. In this POCT perspective, field-flow fractionation (FFF) techniques, in particular gravitational variant (GrFFF) that exploit the earth gravitational field to structure the separation, have been investigated for cells fractionation, characterization and isolation. Thanks to the simplicity of its equipment, amenable to miniaturization, the GrFFF techniques appears to be particularly suited for its implementation in POCT devices and may be used as pre-analytical integrated module to be applied directly to drive target analytes of raw samples to the modules where biospecifc recognition reactions based on ultrasensitive bioluminescence detection occurs, providing an increase in overall analytical output.
Resumo:
In cycling cells positive stimuli like nutrient, growth factors and mitogens increase ribosome biogenesis rate and protein synthesis to ensure both growth and proliferation. In contrast, under stress situation, proliferating cells negatively modulate ribosome production to reduce protein synthesis and block cell cycle progression. The main strategy used by cycling cell to coordinate cell proliferation and ribosome biogenesis is to share regulatory elements, which participate directly in ribosome production and in cell cycle regulation. In fact, there is evidence that stimulation or inhibition of cell proliferation exerts direct effect on activity of the RNA polymerases controlling the ribosome biogenesis, while several alterations in normal ribosome biogenesis cause changes of the expression and the activity of the tumor suppressor p53, the main effector of cell cycle progression inhibition. The available data on the cross-talk between ribosome biogenesis and cell proliferation have been until now obtained in experimental model in which changes in ribosome biogenesis were obtained either by reducing the activity of the RNA polymerase I or by down-regulating the expression of the ribosomal proteins. The molecular pathways involved in the relationship between the effect of the inhibition of RNA polymerase III (Pol III) activity and cell cycle progression have been not yet investigated. In eukaryotes, RNA Polymerase III is responsible for transcription of factors involved both in ribosome assembly (5S rRNA) and rRNA processing (RNAse P and MRP).Thus, the aim of this study is characterize the effects of the down-regulation of RNA Polymerase III activity, or the specific depletion of 5S rRNA. The results that will be obtained might lead to a deeper understanding of the molecular pathway that controls the coordination between ribosome biogenesis and cell cycle, and might give useful information about the possibility to target RNA Polymerase III for cancer treatment.
Resumo:
Previous studies in the group led to the identification of CD4+FOXP3- cells with regulatory functions in human blood that coproduce IL-10 and IFN-gamma. These cells do not belong to the Treg cell lineage since they are Foxp3- but they show some similarities with Th1 cells since they express CCR5, T-bet and produce high levels of IFN-gamma. Thus, they share relevant characteristics with both T regulatory type I cells (Tr1) and Th1 cells and we called them Th1-10 cells. In this study we presented a molecular characterization of Th1-10 cells that includes a gene expression and a microRNA profiling and performed functional studies to assess Th1-10 cells regulatory properties. We demonstrated that Th1-10 cells have a high regulatory potential being able to block the proliferation of activated CD4 naïve T cells to a similar extent as conventional Treg cells, and that this suppression capacity is at least partially mediated by secreted IL10. We showed also that Th1-10 cells are closely related to Th1 effector memory cells and express genes involved in cytotoxicity. In particular, they express the transcription factor EOMES and the cytotoxic effector molecules GZMA and GZMK, and they release cytotoxic granules upon stimulation. Moreover, we found that Eomes regulates cytotoxic functions in CD4+ T cells. We demonstrated that miR-92a, selectively downregulated in Th1-10 cells, directly targets the 3’UTR of EOMES.and this finding identifies miR-92a as a possible mediator of Th1-10 cytotoxicity. Th1-10 cells retain some proliferative capacity when sorted ex vivo and activated in vitro via their TCR, and this effect is markedly enhanced by IL-15, which also had a pro-survival effect on Th-10 cells. Thus, in contrast to conventional cytotoxic T cells, Th1-10 cells have cytotoxic and regulatory functions and are not terminally differentiated, since they retain proliferative capacity.
Resumo:
Class I phosphatidylinositol 3-kinases (PI3Ks) are heterodimeric lipid kinases consisting of a regulatory subunit and one of four catalytic subunits (p110α, p110β, p110γ or p110δ). p110γ/p110δ PI3Ks are highly enriched in leukocytes. In general, PI3Ks regulate a variety of cellular processes including cell proliferation, survival and metabolism, by generating the second messenger phosphatidylinositol-3,4,5-trisphosphate (PtdIns(3,4,5)P3). Their activity is tightly regulated by the phosphatase and tensin homolog (PTEN) lipid phosphatase. PI3Ks are widely implicated in human cancers, and in particular are upregulated in T-cell acute lymphoblastic leukemia (T-ALL), mainly due to loss of PTEN function. These observations lend compelling weight to the application of PI3K inhibitors in the therapy of T-ALL. At present different compounds which target single or multiple PI3K isoforms have entered clinical trials. In the present research, it has been analyzed the therapeutic potential of the pan-PI3K inhibitor BKM120, an orally bioavailable 2,6-dimorpholino pyrimidine derivative, which has entered clinical trials for solid tumors, on both T-ALL cell lines and patient samples. BKM120 treatment resulted in cell cycle arrest and apoptosis, being cytotoxic to a panel of T-ALL cell lines and patient T-lymphoblasts. Remarkably, BKM120 synergized with chemotherapeutic agents currently used for treating T-ALL patients. BKM120 efficacy was confirmed in in vivo studies to a subcutaneous xenotransplant model of human T-ALL. Because it is still unclear which agents among isoform-specific or pan inhibitors can achieve the greater efficacy, further analyses have been conducted to investigate the effects of PI3K inhibition, in order to elucidate the mechanisms responsible for the proliferative impairment of T-ALL. Overall, these results indicated that BKM120 may be an efficient treatment for T-ALLs that have aberrant up-regulation of the PI3K signaling pathway and strongly support clinical application of pan-class I PI3K rather than single-isoform inhibitors in T-ALL treatment.