4 resultados para Regulatory elements Transgenic rice
em AMS Tesi di Dottorato - Alm@DL - Università di Bologna
Resumo:
In cycling cells positive stimuli like nutrient, growth factors and mitogens increase ribosome biogenesis rate and protein synthesis to ensure both growth and proliferation. In contrast, under stress situation, proliferating cells negatively modulate ribosome production to reduce protein synthesis and block cell cycle progression. The main strategy used by cycling cell to coordinate cell proliferation and ribosome biogenesis is to share regulatory elements, which participate directly in ribosome production and in cell cycle regulation. In fact, there is evidence that stimulation or inhibition of cell proliferation exerts direct effect on activity of the RNA polymerases controlling the ribosome biogenesis, while several alterations in normal ribosome biogenesis cause changes of the expression and the activity of the tumor suppressor p53, the main effector of cell cycle progression inhibition. The available data on the cross-talk between ribosome biogenesis and cell proliferation have been until now obtained in experimental model in which changes in ribosome biogenesis were obtained either by reducing the activity of the RNA polymerase I or by down-regulating the expression of the ribosomal proteins. The molecular pathways involved in the relationship between the effect of the inhibition of RNA polymerase III (Pol III) activity and cell cycle progression have been not yet investigated. In eukaryotes, RNA Polymerase III is responsible for transcription of factors involved both in ribosome assembly (5S rRNA) and rRNA processing (RNAse P and MRP).Thus, the aim of this study is characterize the effects of the down-regulation of RNA Polymerase III activity, or the specific depletion of 5S rRNA. The results that will be obtained might lead to a deeper understanding of the molecular pathway that controls the coordination between ribosome biogenesis and cell cycle, and might give useful information about the possibility to target RNA Polymerase III for cancer treatment.
Resumo:
Gli oncocitomi sono tumori epiteliali caratterizzati da un accumulo di mitocondri strutturalmente e funzionalmente compromessi, a prognosi generalmente benigna. Le cause genetiche della trasformazione oncocitaria sono tuttora sconosciute; pertanto, lo studio di oncocitomi in contesti familiari sindromici è utile nella ricerca dei determinanti genetici predisponenti il fenotipo. Diversi membri di una famiglia affetta da sindrome dell’iperparatiroidismo con tumore della mandibola (HPT-JT), dovuta ad un'ampia delezione in CDC73, hanno mostrato recidiva di tumori paratiroidei oncocitari. Il sequenziamento dell’esoma ha escluso mutazioni private della famiglia; all'interno della delezione ereditata, tuttavia, sono stati individuati elementi regolatori del gene glutaredossina 2 (GLRX2), codificante un'isoforma mitocondriale deputata alla deglutationilazione proteica reversibile -modificazione modulante l’attività di numerosi target- il cui ruolo nel cancro non è noto. La proteina è risultata assente in tutti i tumori e dimezzata nei tessuti sani dei soggetti. Per indagare se la sua assenza alteri la deglutationilazione proteica predisponendo al fenotipo oncocitario, sono stati generati modelli cellulari TPC1 e HCT116 GLRX2 KO in cui sono stati riscontrati un ridotto tasso proliferativo ed un'alterata glutationilazione proteica, particolarmente in seguito a stress ossidativo. Un esperimento pilota in vivo ha mostrato cellule KO oncocitoidi, con mitocondri morfologicamente alterati, suggerendo che l’alterazione redox innescata dall’assenza di GLRX2 possa indurre una disfunzione metabolica mitocondriale tale da mimare quelle osservate negli oncocitomi. L’analisi proteomica ha individuato diversi target di glutationilazione nei campioni KO identificando proteine del ciclo di Krebs e della catena respiratoria mitocondriale. In particolare, una marcata glutationilazione del complesso della piruvato deidrogenasi (PDHc) è stata correlata ad una ridotta sintesi di ATP dipendente da piruvato. Considerando l'importanza dello stress ossidativo nella fisiopatologia del cancro ed il ruolo del glutatione nella risposta antiossidante, GLRX2 rappresenta un potenziale candidato nella regolazione del metabolismo ossidativo nelle cellule tumorali esposte allo stress e nella modulazione del fenotipo tumorale.
Resumo:
Cardiac morphogenesis is a complex process governed by evolutionarily conserved transcription factors and signaling molecules. The Drosophila cardiac tube is linear, made of 52 pairs of cardiomyocytes (CMs), which express specific transcription factor genes that have human homologues implicated in Congenital Heart Diseases (CHDs) (NKX2-5, GATA4 and TBX5). The Drosophila cardiac tube is linear and composed of a rostral portion named aorta and a caudal one called heart, distinguished by morphological and functional differences controlled by Hox genes, key regulators of axial patterning. Overexpression and inactivation of the Hox gene abdominal-A (abd-A), which is expressed exclusively in the heart, revealed that abd-A controls heart identity. The aim of our work is to isolate the heart-specific cisregulatory sequences of abd-A direct target genes, the realizator genes granting heart identity. In each segment of the heart, four pairs of cardiomyocytes (CMs) express tinman (tin), homologous to NKX2-5, and acquire strong contractile and automatic rhythmic activities. By tyramide amplified FISH, we found that seven genes, encoding ion channels, pumps or transporters, are specifically expressed in the Tin-CMs of the heart. We initially used online available tools to identify their heart-specific cisregutatory modules by looking for Conserved Non-coding Sequences containing clusters of binding sites for various cardiac transcription factors, including Hox proteins. Based on these data we generated several reporter gene constructs and transgenic embryos, but none of them showed reporter gene expression in the heart. In order to identify additional abd-A target genes, we performed microarray experiments comparing the transcriptomes of aorta versus heart and identified 144 genes overexpressed in the heart. In order to find the heart-specific cis-regulatory regions of these target genes we developed a new bioinformatic approach where prediction is based on pattern matching and ordered statistics. We first retrieved Conserved Noncoding Sequences from the alignment between the D.melanogaster and D.pseudobscura genomes. We scored for combinations of conserved occurrences of ABD-A, ABD-B, TIN, PNR, dMEF2, MADS box, T-box and E-box sites and we ranked these results based on two independent strategies. On one hand we ranked the putative cis-regulatory sequences according to best scored ABD-A biding sites, on the other hand we scored according to conservation of binding sites. We integrated and ranked again the two lists obtained independently to produce a final rank. We generated nGFP reporter construct flies for in vivo validation. We identified three 1kblong heart-specific enhancers. By in vivo and in vitro experiments we are determining whether they are direct abd-A targets, demonstrating the role of a Hox gene in the realization of heart identity. The identified abd-A direct target genes may be targets also of the NKX2-5, GATA4 and/or TBX5 homologues tin, pannier and Doc genes, respectively. The identification of sequences coregulated by a Hox protein and the homologues of transcription factors causing CHDs, will provide a mean to test whether these factors function as Hox cofactors granting cardiac specificity to Hox proteins, increasing our knowledge on the molecular mechanisms underlying CHDs. Finally, it may be investigated whether these Hox targets are involved in CHDs.
Resumo:
Phase variable expression, mediated by high frequency reversible changes in the length of simple sequence repeats, facilitates adaptation of bacterial populations to changing environments and is frequently important in bacterial virulence. Here we elucidate a novel phase variable mechanism for NadA expression, an adhesin and invasin of Neisseria meningitidis. The NadR repressor protein binds to operators flanking the phase variable tract of the nadA promoter gene and contributes to the differential expression levels of phase variant promoters with different numbers of repeats, likely due to different spacing between operators. It is shown that IHF binds between these operators, and may permit looping of the promoter, allowing interaction of NadR at operators located distally or overlapping the promoter. The 4-hydroxyphenylacetic acid, a metabolite of aromatic amino acid catabolism that is secreted in saliva, induces nadA expression by inhibiting the DNA binding activity of the NadR repressor. When induced, only minor differences are evident between NadR-independent transcription levels of promoter phase variants, which are likely due to differential RNA polymerase contacts leading to altered promoter activity. These results suggest that NadA expression is under both stochastic and tight environmental-sensing regulatory control, and both regulations are mediated by the NadR repressor that and may be induced during colonization of the oropharynx where it plays a major role in the successful adhesion and invasion of the mucosa. Hence, simple sequence repeats in promoter regions may be a strategy used by host-adapted bacterial pathogens to randomly switch between expression states that may nonetheless still be induced by appropriate niche-specific signals.