6 resultados para Refrigeration storage
em AMS Tesi di Dottorato - Alm@DL - Università di Bologna
Resumo:
This PhD research is part of a project addressed to improve the quality of Grana Trentino production. The objectives were to evaluated if milk storage and collection procedures may affect cheese-making technology and quality. Actually the milk is collected and delivered to the cheese factory just after milking in 50 L cans without refrigeration or in tanks cooled at 18 °C. This procedure is expensive (two deliveries each day) and the milk quality is difficult to preserve as temperatures are not controlled. The milk refrigeration at the farm could allow a single delivery to the dairy. Therefore it could be a good strategy to preserve raw milk quality and reduce cheese spoilage. This operation may, however, have the drawbacks of favouring the growth of psychrotrophic bacteria and changing the aptitude of milk to coagulation. With the aim of studying the effect on milk and cheese of traditional and new refrigerated technologies of milk storage, two different collection and creaming technologies were compared. The trials were replicated in three cheese factories manufacturing Grana Trentino. Every cheese-making day, about 1000 milk liters were collected from always the same two farms in the different collection procedures (single or double). Milk was processed to produce 2 wheels of Grana trentino every day. During the refrigerated trials, milk was collected and stored at the farm in a mixed tank at 12 or 8 °C and then was carried to the dairy in truck once a day. 112 cheese making day were followed: 56 for traditional technology and 56 for the refrigerated one. Each one of these two thechnologies lead to different ways of creaming: long time in the traditional one and shorter in the new one. For every cheese making day we recorded time, temperatures and pH during the milk processing to cheese. Whole milk before ceraming, cream and skim milk after creaming, vat milk and whey were sampled during every cheese-making day for analysis. After 18 months ripening we opened 46 cheese wheels for further chemical and microbiological analyses. The trials were performed with the aim of: 1 estimate the effect of storage temperatures on microbial communities, physico-chemical or/and rheological differences of milk and skim milk after creaming. 2 detect by culture dependent (plate counts) and indipendent (DGGE) methodolgies the microbial species present in whole, skimmed milk, cream and cheese sampled under the rind and in the core; 3 estimate the physico-chemical characteristics, the proteolytic activity, the content of free aminoacids and volatile compounds in 18 months ripened Grana Trentino cheeses from different storing and creaming of milk technologies. The results presented are remarkable since this is the first in-deep study presenting microbiological and chemical analysis of Grana Trentino that even if belonging to Grana Padano Consortium, it is clearly different in the milk and in the manufacturing technology.
Resumo:
Nowadays alternative energies are an extremely important topic and the possibility of using hydrogen as an energy carrier must be explored. Many problems infer the technological application of this abundant and powerful resource, one of them the possibility of storage. In the framework of suitable materials for hydrogen storage, magnesium has been the center of this study because it is cheap and the amount of stored hydrogen that it achieves (7.6 wt%) is extremely appealing. Nanostructure helps to overcome the slow hydrogen diffusion and the functionalization of surfaces with transition metals or oxides favors the hydrogen molecule dissociation/recombination. The aim of this research is the investigation of the metal-hydride transformation in magnesium nanoparticles synthesized by inert-gas condensation, exploiting the fact that they are a simple model system. The so produced nanostructured powder has been analyzed in response to nanoparticles surface functionalization by transition metal clusters, specifically palladium, nickel and titanium, chosen on the basis of their completely different Mg-related phase diagrams. The role of the intermetallic phases formed upon heating and hydrogenation treatments will be presented to provide a comprehensive picture of hydrogen sorption in this class of nanostructured storage materials.
Resumo:
The quality of fish products is indispensably linked to the freshness of the raw material modulated by appropriate manipulation and storage conditions, specially the storage temperature after catch. The purpose of the research presented in this thesis, which was largely conducted in the context of a research project funded by Italian Ministry of Agricultural, Food and Forestry Policies (MIPAAF), concerned the evaluation of the freshness of farmed and wild fish species, in relation to different storage conditions, under ice (0°C) or at refrigeration temperature (4°C). Several specimens of different species, bogue (Boops boops), red mullet (Mullus barbatus), sea bream (Sparus aurata) and sea bass (Dicentrarchus labrax), during storage, under the different temperature conditions adopted, have been examined. The assessed control parameters were physical (texture, through the use of a dynamometer; visual quality using a computer vision system (CVS)), chemical (through footprint metabolomics 1H-NMR) and sensory (Quality Index Method (QIM). Microbiological determinations were also carried out on the species of hake (Merluccius merluccius). In general obtained results confirmed that the temperature of manipulation/conservation is a key factor in maintaining fish freshness. NMR spectroscopy showed to be able to quantify and evaluate the kinetics for unselected compounds during fish degradation, even a posteriori. This can be suitable for the development of new parameters related to quality and freshness. The development of physical methods, particularly the image analysis performed by computer vision system (CVS), for the evaluation of fish degradation, is very promising. Among CVS parameters, skin colour, presence and distribution of gill mucus, and eye shape modification evidenced a high sensibility for the estimation of fish quality loss, as a function of the adopted storage conditions. Particularly the eye concavity index detected on fish eye showed a high positive correlation with total QIM score.
Resumo:
Beside the traditional paradigm of "centralized" power generation, a new concept of "distributed" generation is emerging, in which the same user becomes pro-sumer. During this transition, the Energy Storage Systems (ESS) can provide multiple services and features, which are necessary for a higher quality of the electrical system and for the optimization of non-programmable Renewable Energy Source (RES) power plants. A ESS prototype was designed, developed and integrated into a renewable energy production system in order to create a smart microgrid and consequently manage in an efficient and intelligent way the energy flow as a function of the power demand. The produced energy can be introduced into the grid, supplied to the load directly or stored in batteries. The microgrid is composed by a 7 kW wind turbine (WT) and a 17 kW photovoltaic (PV) plant are part of. The load is given by electrical utilities of a cheese factory. The ESS is composed by the following two subsystems, a Battery Energy Storage System (BESS) and a Power Control System (PCS). With the aim of sizing the ESS, a Remote Grid Analyzer (RGA) was designed, realized and connected to the wind turbine, photovoltaic plant and the switchboard. Afterwards, different electrochemical storage technologies were studied, and taking into account the load requirements present in the cheese factory, the most suitable solution was identified in the high temperatures salt Na-NiCl2 battery technology. The data acquisition from all electrical utilities provided a detailed load analysis, indicating the optimal storage size equal to a 30 kW battery system. Moreover a container was designed and realized to locate the BESS and PCS, meeting all the requirements and safety conditions. Furthermore, a smart control system was implemented in order to handle the different applications of the ESS, such as peak shaving or load levelling.
Resumo:
According to recent studies, antioxidant supplementation on gamete processing and/or storage solutions improvesgamete quality parameters, after cooling or storage at sub zero temperature. The aim of the present study was to investigate the effects of antioxidant supplementation on pig and horse gamete storage. The first study aimed to determine the effects of resveratrol (RESV) on the apoptotic status of porcine oocytes vitrified by Cryotop method, evaluating phosphatidylserine (PS) exteriorization and caspases activation. RESV(2µM) was added during: IVM (A); 2 h post-warming incubation (B); vitrification/warming and 2 h post-warming incubation (C); all previous phases (D). The obtained data demonstrate that RESV supplementation in the various steps of IVM and vitrification/warming procedure can modulate the apoptotic process, improving the resistance of porcine oocytes to cryopreservation-induced damage. In the second work different concentrations of RESV (10, 20, 40, and 80µM) were added during liquid storage of stallion sperm for 24 hours at either 10°C or 4°C, under anaerobic conditions. Our findings demonstrate that RESV supplementation does not enhance sperm quality of stallion semen after 24 hours of storage. Moreover, the highest RESV concentrations tested (40 and 80µM) could damage sperm functional status, probably acting as pro-oxidant. Finally, in the third work other two antioxidants, ascorbic acid (AA) (100 µM) and glutathione (GSH) (5mM) were added on boar freezing and/or thawing solutions. In our study different sperm parameters were evaluated before freezing and at 30 and 240 minutes after thawing. Our results showed that GSH and AA significantly improved boar sperm cryotolerance, especially when supplemented together to both freezing and thawing media. This improvement was observed in sperm viability and acrosome integrity, sperm motility, and nucleoprotein structure. Although ROS levels were not much increased by freeze-thawing procedures, the addition of GSH and AA to both freezing and thawing extenders significantly decreased intracellular peroxide levels.
Resumo:
Virgin olive oil(VOO) is a product characterized by high economic and nutritional values, because of its superior sensory characteristics and minor compounds (phenols and tocopherols) contents. Since the original quality of VOO may change during its storage, this study aimed to investigate the influence of different storage and shipment conditions on the quality of VOO, by studying different solutions such as filtration, dark storage and shipment inside insulated containers to protect it. Different analytical techniques were used to follow-up the quality changes during virgin olive oil storage and simulated shipments, in terms of basic quality parameters, sensory analysis and evaluation of minor components (phenolic compounds, diglycerides, volatile compounds). Four main research streams were presented in this PhD thesis: The results obtained from the first experimental section revealed that the application of filtration and/or clarification can decrease the unavoidable quality loss of the oil samples during storage, in comparison with unfiltered oil samples. The second section indicated that the virgin olive oil freshness, evaluated by diglycerides content, was mainly affected by the storage time and temperature. The third section revealed that fluctuation in temperature during storage may adversely affect the virgin olive oil quality, in terms of hydrolytic rancidity and oxidation quality. The fourth section showed that virgin olive oil shipped inside insulated containers showed lower hydrolytic and oxidation degradation than those without insulation cover. Overall, this PhD thesis highlighted that application of adequate treatment, such as filtration or clarification, in addition to a good protection against other external variables, such as temperature and light, will improve the stability of virgin olive oil during storage.