11 resultados para Redox Properties

em AMS Tesi di Dottorato - Alm@DL - Università di Bologna


Relevância:

60.00% 60.00%

Publicador:

Resumo:

The main aims of my PhD research work have been the investigation of the redox, photophysical and electronic properties of carbon nanotubes (CNT) and their possible uses as functional substrates for the (electro)catalytic production of oxygen and as molecular connectors for Quantum-dot Molecular Automata. While for CNT many and diverse applications in electronics, in sensors and biosensors field, as a structural reinforcing in composite materials have long been proposed, the study of their properties as individual species has been for long a challenging task. CNT are in fact virtually insoluble in any solvent and, for years, most of the studies has been carried out on bulk samples (bundles). In Chapter 2 an appropriate description of carbon nanotubes is reported, about their production methods and the functionalization strategies for their solubilization. In Chapter 3 an extensive voltammetric and vis-NIR spectroelectrochemical investigation of true solutions of unfunctionalized individual single wall CNT (SWNT) is reported that permitted to determine for the first time the standard electrochemical potentials of reduction and oxidation as a function of the tube diameter of a large number of semiconducting SWNTs. We also established the Fermi energy and the exciton binding energy for individual tubes in solution and, from the linear correlation found between the potentials and the optical transition energies, one to calculate the redox potentials of SWNTs that are insufficiently abundant or absent in the samples. In Chapter 4 we report on very efficient and stable nano-structured, oxygen-evolving anodes (OEA) that were obtained by the assembly of an oxygen evolving polyoxometalate cluster, (a totally inorganic ruthenium catalyst) with a conducting bed of multiwalled carbon nanotubes (MWCNT). Here, MWCNT were effectively used as carrier of the polyoxometallate for the electrocatalytic production of oxygen and turned out to greatly increase both the efficiency and stability of the device avoiding the release of the catalysts. Our bioinspired electrode addresses the major challenge of artificial photosynthesis, i.e. efficient water oxidation, taking us closer to when we might power the planet with carbon-free fuels. In Chapter 5 a study on surface-active chiral bis-ferrocenes conveniently designed in order to act as prototypical units for molecular computing devices is reported. Preliminary electrochemical studies in liquid environment demonstrated the capability of such molecules to enter three indistinguishable oxidation states. Side chains introduction allowed to organize them in the form of self-assembled monolayers (SAM) onto a surface and to study the molecular and redox properties on solid substrates. Electrochemical studies on SAMs of these molecules confirmed their attitude to undergo fast (Nernstian) electron transfer processes generating, in the positive potential region, either the full oxidized Fc+-Fc+ or the partly oxidized Fc+-Fc species. Finally, in Chapter 6 we report on a preliminary electrochemical study of graphene solutions prepared according to an original procedure recently described in the literature. Graphene is the newly-born of carbon nanomaterials and is certainly bound to be among the most promising materials for the next nanoelectronic generation.

Relevância:

60.00% 60.00%

Publicador:

Resumo:

The role of the amount of Nb, used as a dopant for VPP, and how its presence may affect the generation of the active and selective δ-VOPO4 at the VPP surface under reaction conditions, was investigated, employing ex-situ and in-situ characterisation techniques. We found that Nb indeed may favour, under specific conditions, the generation of the desired δ-VOPO4 compound; however, its effect of enhancement of catalytic behaviour was not simply proportional to its concentration. In order to better understand how Nb may affect the generation of the active phase, we prepared V/Nb mixed phosphates; the formation of a solid solution was possible only under specific conditions, with a limited reciprocal dissolution of the two elements. We concluded that even though the incorporation of small amounts of Nb5+ in the VOPO4 (and also of V5+ in NbOPO4) cannot be excluded, a phenomenon which might favour the generation of the desired δ-VOPO4 compound, however the main role of Nb5+ was related to a modification of the redox properties of V4+ in the VPP, and specifically of the redox potential associated to the couple V4+/V5+. This led to a catalyst that during reaction was more oxidized than the corresponding undoped VPP, which under specific reaction conditions allowed obtain a better selectivity to MA. Oppositely, an excessive oxidation of VPP (catalysts having high [Nb]) affected negatively the MA selectivity, because of the excessive formation of COx. A preliminary study regarding the oxidehydration of 1-butanol into MA was carried out testing various catalysts: the best catalyst resulted VPP; however the MA selectivity was lower than that obtained from n-butane. With in-situ/operando Raman study of the Nb-doped and undoped catalysts we verified that the redox cycle involves the VPP and the δ-VOPO4 compounds, that the reoxidation step of V4+ in VPP is the rate-determining one.

Relevância:

60.00% 60.00%

Publicador:

Resumo:

The present study is focused on the development of new VIII group metal on CeO2 – ZrO2 (CZO) catalyst to be used in reforming reaction for syngas production. The catalyst are tested in the oxyreforming process, extensively studied by Barbera [44] in a new multistep process configuration, with intermediate H2 membrane separation, that can be carried out at lower temperature (750°C) with respect the reforming processes (900 – 1000°C). In spite of the milder temperatures, the oxy-reforming conditions (S/C = 0.7; O2/C = 0.21) remain critical regarding the deactivation problems mainly deriving from thermal sintering and carbon formation phenomena. The combination of the high thermal stability characterizing the ZrO2, with the CeO2 redox properties, allows the formation of stable mixed oxide system with high oxygen mobility. This feature can be exploited in order to contrast the carbon deposition on the active metal surface through the oxidation of the carbon by means of the mobile oxygen atoms available at the surface of the CZO support. Ce0.5Zr0.5O2 is the phase claimed to have the highest oxygen mobility but its formation is difficult through classical synthesis (co-precipitation), hence a water-in-oil microemulsion method is, widely studied and characterized. Two methods (IWI and bulk) for the insertion of the active metal (Rh, Ru, Ni) are followed and their effects, mainly related to the metal stability and dispersion on the support, are discussed, correlating the characterization with the catalytic activity. Different parameters (calcination and reduction temperatures) are tuned to obtain the best catalytic system both in terms of activity and stability. Interesting results are obtained with impregnated and bulk catalysts, the latter representing a new class of catalysts. The best catalysts are also tested in a low temperature (350 – 500°C) steam reforming process and preliminary tests with H2 membrane separation have been also carried out.

Relevância:

60.00% 60.00%

Publicador:

Resumo:

The project of this Ph.D. thesis is based on a co-supervised collaboration between Università di Bologna, ALMA MATER STUDIORUM (Italy) and Instituto de Tecnología Química, Universitat Politècnica de València ITQ-UPV (Spain). This Ph.D. thesis is about the synthesis, characterization and catalytic testing of complex mixed-oxide catalysts mainly related to the family of Hexagonal Tungsten Bronzes (HTBs). These materials have been little explored as catalysts, although they have a great potential as multifunctional materials. Their peculiar acid properties can be coupled to other functionalities (e.g. redox sites) by isomorphous substitution of tungsten atoms with other transition metals such as vanadium, niobium and molybdenum. In this PhD thesis, it was demonstrated how it is possible to prepare substituted-HTBs by hydrothermal synthesis; these mixed-oxide were fully characterize by a number of physicochemical techniques such as XPS, HR-TEM, XAS etc. They were also used as catalysts for the one-pot glycerol oxidehydration to acrylic acid; this reaction might represent a viable chemical route to solve the important issue related to the co-production of glycerin along the biodiesel production chain. Acrylic acid yields as high as 51% were obtained and important structure-reactivity correlations were proved to govern the catalytic performance; only fine tuning of acid and redox properties as well as the in-framework presence of vanadium are fundamental to achieve noteworthy yields into the acid monomer. The overall results reported herein might represent an important contribution for future applications of HTBs in catalysis as well as a general guideline for a multifaceted approach for their physicochemical characterization.

Relevância:

60.00% 60.00%

Publicador:

Resumo:

The main purpose of my PhD was the combination of the principles of transition metal catalysis with photoredox catalysis. We focused our attention on the development of novel dual catalytic protocols for the functionalization of carbonyl compounds through the generation of transient nucleophilic organometallic species. Specifically, we focused on the development of new methodologies combining photoredox catalysis with titanium and nickel in low oxidation state. Firstly, a Barbier-type allylation of aromatic and aliphatic aldehydes –catalytic in titanium– in the presence of a blue photon-absorbing dye was developed. Parallelly, we were pleased to observe that the developed methodology could also be extended to the propargylation of aldehydes under analogous conditions. After an extensive re–optimization of all the reaction parameters, we developed an enantioselective and diastereoselective pinacol coupling of aromatic aldehydes promoted by non-toxic, cheap and easy to synthetize titanium complexes. The key feature, that allows the complete (dia)stereocontrol played by titanium, is the employment of a red-absorbing organic dye. The tailored (photo)redox properties of the red-absorbing organic dye [nPr–DMQA+][BF4–] promote the selective reduction of Ti(IV) to Ti(III). Moreover, even if the major contribution in dual photoredox and nickel catalysis is devoted to the realization of cross-coupling-type reactions, we wanted to evaluate different possible scenarios. Our focus was on the possibility of exploiting intermediates arising from the oxidative addition of nickel complexes as transient nucleophilic species. The first topic considered regarded the possibility to perform allylation of aldehydes by dual photoredox and nickel catalysis. In the first instance, a non–stereocontrolled version of the reaction was presented. Finally, after a long series of drastic modification of the reaction conditions, a highly enantioselective variant of the protocol was also reported. All the reported methodologies are supported by careful photophysical analysis and, in some cases, computational modelling.

Relevância:

60.00% 60.00%

Publicador:

Resumo:

The present research work focused on the valorisation and upgrading of bio-ethanol over heterogeneous catalysts in a lab-scale continuous gas-flow system. In the Unibo laboratories, catalytic tests have been carried out in the temperature range 300-600°C by feeding an ethanol/He mixture in the reactor. After choosing the reaction conditions, ion-exchanged hydroxyapatite with transition metals (i.e., Fe, Cu) and alkaline earth metal (i.e., Sr) have been synthesized and tested. The Sr-HAP catalyst led to the formation of a complex reaction mixture the composition of which need further optimization in order to fill the requisite to be used as fuel-blend. Then, some zirconium-oxide based catalysts have been prepared through two different methods, precipitation and hydrothermal, by varying some synthetic parameters (i.e., pH, the nature of the base) and by adding a transition metal as dopant agent (i.e., Ti and Y). The presence of a dopant into the zirconia structure favoured the stabilization of the tetragonal or cubic phase against the monoclinic one. Interestingly, 5%mol Ti-doped zirconia exhibited a different catalytic behaviour yielding diethyl ether as major product at 300°C, while all the others samples produced mainly ethylene. Then, the effect of acid-base properties of sepiolite, using alkali metals (i.e., Na, K, Cs) with different metal loading (i.e., 2, 4, 5, 7, 14 wt%) as promoters, and of the redox properties of sepiolite-supported CuO or NiO, on the catalytic conversion of ethanol into n-butanol has been investigated. Thermal treated sepiolite samples mainly acted as acid catalyst, yielding preferentially the dehydration products of ethanol (ethylene and diethyl ether). Best results in terms of activity (ethanol conversion, 59%) and n-butanol selectivity (30%) where obtained at 400ºC and a contact time, W/F, of 2 g/mL·s over the catalyst consisting of sepiolite calcined at 500ºC modified with 7 wt% of cesium.

Relevância:

60.00% 60.00%

Publicador:

Resumo:

The program of my PhD studies has been dealing with the investigation of the research outcomes that may result from the use of luminescent Iridium(III) cyclometalated complexes in the field of polymer science. In particular, my activity has been focused on exploring two main applicative contexts, i.e. Ir(III) complexes for preparing polymers and in combination with polymers. In the first part, a new set of luminescent Ir(III) complexes was exploited as photocatalysts for light-assisted atom transfer radical polymerization of methyl methacrylate. The decoration of both cyclometalated and ancillary ligands with sp3 hybridized nitrogen substituents together with the use of specific counterions, imparted suitable photophysical and redox properties for an efficient photocatalyzed process. The second part has been focused on the employment of Ir(III) tetrazole complexes as phosphorescent dyes in polymeric materials. Colourless luminescent solar concentrators were prepared blending two Ir(III) cyclometalates with acrylate polymers. Their performances were investigated, leading to promising outcomes comparable, or superior, to those obtained from colourless LSCs based on organic fluorophores. As a complementary approach, Ir(III) complexes were covalently linked to polymers in the side chain, to obtain a new class of metallopolymers. To this extent, a bifunctional tetrazolate molecule, equipped with a coordination site and a polymerizable unit, was designed. The photophysical properties of the resultant luminescent polymeric films were discussed. In the end, an additional project involving both polymers and metal compounds was carried out during my experience as a visiting PhD student at Humboldt – University of Berlin. Polystyrene and polyethylene glycol -based ion-exchange resins were functionalized with peptides through a ligation pathway, for the selective chelation of Copper(II) in aqueous solutions. The coordinating capability of the materials towards Cu2+ ions was tested by ICP-MS analysis. The resins strategically modified with ion-selective peptides, may be exploited in the preparation of water-processing devices.

Relevância:

60.00% 60.00%

Publicador:

Resumo:

Emissions of CO2 are constantly growing since the beginning of industrial era. Interruption of the production of major emitters sectors (energy and agriculture) is not a viable way and reducing all the emission through carbon capture and storage (CCS) is not economically viable and little publicly accepted, therefore, it becomes fundamentals to take actions like retrofitting already developed infrastructure employing cleanest resources, modify the actual processes limiting the emissions, and reduce the emissions already present through direct air capture. The present thesis will deeply discuss the aspects mentioned in regard to syngas and hydrogen production since they have a central role in the market of energy and chemicals. Among the strategies discussed, greater emphasis is given to the application of looping technologies and to direct air capture processes, as they have been the main point of this work. Particularly, chemical looping methane reforming to syngas was studied with Aspen Plus thermodynamic simulations, thermogravimetric analysis characterization (TGA) and testing in a fixed bed reactor. The process was studied cyclically exploiting the redox properties of a Ce-based oxide oxygen carrier synthetized with a simple forming procedure. The two steps of the looping cycles were studied isothermally at 900 °C and 950° C with a mixture of 10 %CH4 in N2 and of 3% O2 in N2, for carrier reduction and oxidation, respectively. During the stay abroad, in collaboration with the EHT of Zurich, a CO2 capture process in presence of amine solid sorbents was investigated, studying the difference in the performance achievable with the use of contactors of different geometry. The process was studied at two concentrations (382 ppm CO2 in N2 and 5.62% CO2 in N2) and at different flow rates, to understand the dynamics of the adsorption process and to define the mass transfer limiting step.

Relevância:

30.00% 30.00%

Publicador:

Resumo:

The aim of the present study is understanding the properties of a new group of redox proteins having in common a DOMON-type domain with characteristics of cytochromes b. The superfamily of proteins containing a DOMON of this type includes a few protein families. With the aim of better characterizing this new protein family, the present work addresses both a CyDOM protein (a cytochrome b561) and a protein only comprised of DOMON(AIR12), both of plant origin. Apoplastic ascorbate can be regenerated from monodehydroascorbate by a trans-plasma membrane redox system which uses cytosolic ascorbate as a reductant and comprises a high potential cytochrome b. We identified the major plasma membrane (PM) ascorbate-reducible b-type cytochrome of bean (Phaseolus vulgaris) and soybean (Glycine max) hypocotyls as orthologs of Arabidopsis auxin-responsive gene air12. The protein, which is glycosylated and glycosylphosphatidylinositol-anchored to the external side of the PM in vivo, was expressed in Pichia pastoris in a recombinant form, lacking the glycosylphosphatidylinositol-modification signal, and purified from the culture medium. Recombinant AIR12 is a soluble protein predicted to fold into a β-sandwich domain and belonging to the DOMON superfamily. It is shown to be a b-type cytochrome with a symmetrical α-band at 561 nm, to be fully reduced by ascorbate and fully oxidized by monodehydroascorbate. Redox potentiometry suggests that AIR12 binds two high-potential hemes (Em,7 +135 and +236 mV). Phylogenetic analyses reveal that the auxin-responsive genes AIR12 constitute a new family of plasma membrane b-type cytochromes specific to flowering plants. Although AIR12 is one of the few redox proteins of the PM characterized to date, the role of AIR12 in trans-PM electron transfer would imply interaction with other partners which are still to be identified. Another part of the present project was aimed at understanding of a soybean protein comprised of a DOMON fused with a well-defined b561 cytochrome domain (CyDOM). Various bioinformatic approaches show this protein to be composed of an N-terminal DOMON followed by b561 domain. The latter contains five transmembrane helices featuring highly conserved histidines, which might bind haem groups. The CyDOM has been cloned and expressed in the yeast Pichia pastoris, and spectroscopic analyses have been accomplished on solubilized yeast membranes. CyDOM clearly reveal the properties of b-type cytochrome. The results highlight the fact that CyDOM is clearly able to lead an electron flux through the plasmamembrane. Voltage clamp experiments demonstrate that Xenopus laevis oocytes transformed with CyDOM of soybean exhibit negative electrical currents in presence of an external electron acceptor. Analogous investigations were carried out with SDR2, a CyDOM of Drosophila melanogaster which shows an electron transport capacity even higher than plant CyDOM. As quoted above, these data reinforce those obtained in plant CyDOM on the one hand, and on the other hand allow to attribute to SDR2-like proteins the properties assigned to CyDOM. Was expressed in Regenerated tobacco roots, transiently transformed with infected a with chimeral construct GFP: CyDOM (by A. rhizogenes infection) reveals a plasmamembrane localization of CyDOM both in epidermal cells of the elongation zone of roots and in root hairs. In conclusion. Although the data presented here await to be expanded and in part clarified, it is safe to say they open a new perspective about the role of this group of proteins. The biological relevance of the functional and physiological implications of DOMON redox domains seems noteworthy, and it can but increase with future advances in research. Beyond the very finding, however interesting in itself, of DOMON domains as extracellular cytochromes, the present study testifies to the fact that cytochrome proteins containing DOMON domains of the type of “CyDOM” can transfer electrons through membranes and may represent the most important redox component of the plasmamembrane as yet discovered.

Relevância:

30.00% 30.00%

Publicador:

Resumo:

The aim of this Ph.D. project has been the photophysical and photochemical characterization of new photo- and redox-active supramolecular systems. In particular we studied two different classes of compounds: metal complexes and dendrimers. Two different families of bis-cyclometalated neutral Ir(III) complexes are presented and their photophysical properties are discussed. The first family of complexes contains two 2-phenylpyridyl (ppy) or 2-(4,6-difluorophenyl)pyridyl (F2ppy) cyclometalated ligands and an ancillary ligand constituted by a phenol-oxazoline (phox), which can be substituted in the third position with a fluorine group (Fphox). In the second part of this study, we present another family of bis-cyclometalated Ir(III) complexes in which the ancillary ligand could be a chiral or an achiral bis-oxazoline (box). We report on their structural, electrochemical, photophysical, and photochemical properties. Complexes containing phox and Fphox ancillary ligands show blue luminescence with very high quantum yield, while complexes with box ligands do not show particularly interesting photophysical properties. Surprisingly these complexes give an unexpected photoreaction when irradiated with UV light in presence of dioxygen. This photoreaction originates a stable, strong blue emitting and particularly interesting photoproduct. Three successive generations of a family of polyethyleneglycol (PEG)-coated Pd(II) tetrabenzoporphyrin (PdTBP)-based dendritic nanoprobes are presented, and their ability to sensitize singlet oxygen and inflict cellular photodamage are discussed. It was found that the size of the dendrimer has practically no effect on the singlet oxygen sensitization efficiency, that approximate the unity, in spite of the strong attenuation of the triplet quenching rate with an increase in the dendrimer generation. Nevertheless, when compared against a commonly used singlet oxygen sensitizer, as Photofrin, the phosphorescent probes were found to be non-phototoxic. The lack of phototoxicity is presumably due to the inability of PEGylated probes to associate with cell surfaces and/or penetrate cellular membranes. The results suggest that protected phosphorescent probes can be safely used for oxygen measurements in biological systems in vivo. A new family of two photoswitchable (G0(Azo) and G1(Azo)) dendrimers with an azobenzene core, two cyclam units as coordination sites for metal ions, and luminescent naphthalene units at the periphery have been characterized and their coordination abilities have been studied. Because of their proximity, the various functional groups of the dendrimer may interact, so that the properties of the dendrimers are different from those exhibited by the separated functional units. Both the naphthalene fluorescence and the azobenzene photoisomerization can be observed in the dendrimer, but it has been shown that (i) the fluorescent excited state of the naphthalene units is substantially quenched by excimer and exciplex formation and by energy transfer to the azobenzene units, and (ii) in the latter case the fluorescence quenching is accompanied by the photosensitized isomerization of the trans → cis, and, with higher efficiency, the cis → trans reaction. Complexation of these dendrimers, both trans and cis isomers, with Zn(II) ions shows that complexes of 1:1 and 2:1 metal per dendrimer stoichiometry are formed showing different photophysical and photochemical properties compared to the corresponding free ligands. Practically unitary efficiency of the sensitized isomerization of trans → cis and cis → trans reaction is observed, as well as a slight increase in the naphthalene monomer emission. These results are consistent with the coordination of the cyclam amine units with Zn(II), which prevents exciplex formation. No indication of a concomitant coordination of both cyclam to a single metal ion has been obtained both for trans and cis isomer.

Relevância:

30.00% 30.00%

Publicador:

Resumo:

Amniotic fluid stem cells (hAFSC) are emerging as a potential therapeutic approach for various disorders. The low number of available hAFSC requires their ex vivo expansion prior to clinical use, however, during their in vitro culture, hAFSC quickly reach replicative senescence. The principal aim of this study was to investigate the aging process occurring during in vitro expansion of hAFSC, focusing on the redox control that has been reported to be affected in premature and physiological aging. My results show that a strong heterogeneity is present among samples that reflects their different behaviour in culture. I identified three proteins, namely Nox4, prelamin A and PML, which expression increases during hAFSC aging process and could be used as new biomarkers to screen the samples. Furthermore, I found that Nox4 degradation is regulated by sumoylation via proteasome and involves interactions with PML bodies and prelamin A. Since various studies revealed that donor-dependent differences could be explained by cell-to-cell variation within each patient, I studied in deep this phenomenon. I showed that the heterogeneity among samples is also accompanied by a strong intra-population heterogeneity. Separation of hAFSC subpopulations from the same donor, using Celector® technology, showed that an enrichment in the last eluted fraction could improve hAFSC application in regenerative medicine. One of the other problems is that nowadays hAFSC are expanded under atmospheric O2 concentration, which is higher than the O2 tension in their natural niches. This higher O2 concentration might cause environmental stress to the in vitro cultured hAFSCs and accelerate their aging process. Here, I showed that prolonged low oxygen tension exposure preserves different hAFSC stemness properties. In conclusion, my study pointed different approaches to improve in vitro hAFSC expansion and manipulation with the purpose to land at stem cell therapy.