12 resultados para Rectangular Microchannels

em AMS Tesi di Dottorato - Alm@DL - Università di Bologna


Relevância:

20.00% 20.00%

Publicador:

Resumo:

Due to increased interest in miniaturization, great attention has been given in the recent decade to the micro heat exchanging systems. Literature survey suggests that there is still a limited understanding of gas flows in micro heat exchanging systems. The aim of the current thesis is to further the understanding of fluid flow and heat transfer phenomenon inside such geometries when a compressible working fluid is utilized. A combined experimental and numerical approach has been utilized in order to overcome the lack of employable sensors for micro dimensional channels. After conducting a detailed comparison between various data reduction methodologies employed in the literature, the best suited methodology for gas microflow experimentalists is proposed. A transitional turbulence model is extensively validated against the experimental results of the microtubes and microchannels under adiabatic wall conditions. Heat transfer analysis of single microtubes showed that when the compressible working fluid is used, Nusselt number results are in partial disagreement with the conventional theory at highly turbulent flow regime for microtubes having a hydraulic diameter less than 250 microns. Experimental and numerical analysis on a prototype double layer microchannel heat exchanger showed that compressibility is detrimental to the thermal performance. It has been found that compressibility effects for micro heat exchangers are significant when the average Mach number at the outlet of the microchannel is greater than 0.1 compared to the adiabatic limit of 0.3. Lastly, to avoid a staggering amount of the computational power needed to simulate the micro heat exchanging systems with hundreds of microchannels, a reduced order model based on the porous medium has been developed that considers the compressibility of the gas inside microchannels. The validation of the proposed model against experimental results of average thermal effectiveness and the pressure loss showed an excellent match between the two.

Relevância:

10.00% 10.00%

Publicador:

Resumo:

Composite porcelain enamels are inorganic coatings for metallic components based on a special ceramic-vitreous matrix in which specific additives are randomly dispersed. The ceramic-vitreous matrix is made by a mixture of various raw materials and elements and in particular it is based on boron-silicate glass added with metal oxides(1) of titanium, zinc, tin, zirconia, alumina, ecc. These additions are often used to improve and enhance some important performances such as corrosion(2) and wear resistance, mechanical strength, fracture toughness and also aesthetic functions. The coating process, called enamelling, depends on the nature of the surface, but also on the kind of the used porcelain enamel. For metal sheets coatings two industrial processes are actually used: one based on a wet porcelain enamel and another based on a dry-silicone porcelain enamel. During the firing process, that is performed at about 870°C in the case of a steel substrate, the enamel raw material melts and interacts with the metal substrate so enabling the formation of a continuous varying structure. The interface domain between the substrate and the external layer is made of a complex material system where the ceramic vitreous and the metal constituents are mixed. In particular four main regions can be identified, (i) the pure metal region, (ii) the region where the metal constituents are dominant compared with the ceramic vitreous components, (iii) the region where the ceramic vitreous constituents are dominant compared with the metal ones, and the fourth region (iv) composed by the pure ceramic vitreous material. It has also to be noticed the presence of metallic dendrites that hinder the substrate and the external layer passing through the interphase region. Each region of the final composite structure plays a specific role: the metal substrate has mainly the structural function, the interphase region and the embedded dendrites guarantee the adhesion of the external vitreous layer to the substrate and the external vitreous layer is characterized by an high tribological, corrosion and thermal shock resistance. Such material, due to its internal composition, functionalization and architecture can be considered as a functionally graded composite material. The knowledge of the mechanical, tribological and chemical behavior of such composites is not well established and the research is still in progress. In particular the mechanical performances data about the composite coating are not jet established. In the present work the Residual Stresses, the Young modulus and the First Crack Failure of the composite porcelain enamel coating are studied. Due to the differences of the porcelain composite enamel and steel thermal properties the enamelled steel sheets have residual stresses: compressive residual stress acts on the coating and tensile residual stress acts on the steel sheet. The residual stresses estimation has been performed by measuring the curvature of rectangular one-side coated specimens. The Young modulus and the First Crack Failure (FCF) of the coating have been estimated by four point bending tests (3-7) monitored by means of the Acoustic Emission (AE) technique(5,6). In particular the AE information has been used to identify, during the bending tests, the displacement domain over which no coating failure occurs (Free Failure Zone, FFZ). In the FFZ domain, the Young modulus has been estimated according to ASTM D6272-02. The FCF has been calculated as the ratio between the displacement at the first crack of the coating and the coating thickness on the cracked side. The mechanical performances of the tested coated specimens have also been related and discussed to respective microstructure and surface characteristics by double entry charts.

Relevância:

10.00% 10.00%

Publicador:

Resumo:

This work focuses on magnetohydrodynamic (MHD) mixed convection flow of electrically conducting fluids enclosed in simple 1D and 2D geometries in steady periodic regime. In particular, in Chapter one a short overview is given about the history of MHD, with reference to papers available in literature, and a listing of some of its most common technological applications, whereas Chapter two deals with the analytical formulation of the MHD problem, starting from the fluid dynamic and energy equations and adding the effects of an external imposed magnetic field using the Ohm's law and the definition of the Lorentz force. Moreover a description of the various kinds of boundary conditions is given, with particular emphasis given to their practical realization. Chapter three, four and five describe the solution procedure of mixed convective flows with MHD effects. In all cases a uniform parallel magnetic field is supposed to be present in the whole fluid domain transverse with respect to the velocity field. The steady-periodic regime will be analyzed, where the periodicity is induced by wall temperature boundary conditions, which vary in time with a sinusoidal law. Local balance equations of momentum, energy and charge will be solved analytically and numerically using as parameters either geometrical ratios or material properties. In particular, in Chapter three the solution method for the mixed convective flow in a 1D vertical parallel channel with MHD effects is illustrated. The influence of a transverse magnetic field will be studied in the steady periodic regime induced by an oscillating wall temperature. Analytical and numerical solutions will be provided in terms of velocity and temperature profiles, wall friction factors and average heat fluxes for several values of the governing parameters. In Chapter four the 2D problem of the mixed convective flow in a vertical round pipe with MHD effects is analyzed. Again, a transverse magnetic field influences the steady periodic regime induced by the oscillating wall temperature of the wall. A numerical solution is presented, obtained using a finite element approach, and as a result velocity and temperature profiles, wall friction factors and average heat fluxes are derived for several values of the Hartmann and Prandtl numbers. In Chapter five the 2D problem of the mixed convective flow in a vertical rectangular duct with MHD effects is discussed. As seen in the previous chapters, a transverse magnetic field influences the steady periodic regime induced by the oscillating wall temperature of the four walls. The numerical solution obtained using a finite element approach is presented, and a collection of results, including velocity and temperature profiles, wall friction factors and average heat fluxes, is provided for several values of, among other parameters, the duct aspect ratio. A comparison with analytical solutions is also provided, as a proof of the validity of the numerical method. Chapter six is the concluding chapter, where some reflections on the MHD effects on mixed convection flow will be made, in agreement with the experience and the results gathered in the analyses presented in the previous chapters. In the appendices special auxiliary functions and FORTRAN program listings are reported, to support the formulations used in the solution chapters.

Relevância:

10.00% 10.00%

Publicador:

Resumo:

Abstract. This thesis presents a discussion on a few specific topics regarding the low velocity impact behaviour of laminated composites. These topics were chosen because of their significance as well as the relatively limited attention received so far by the scientific community. The first issue considered is the comparison between the effects induced by a low velocity impact and by a quasi-static indentation experimental test. An analysis of both test conditions is presented, based on the results of experiments carried out on carbon fibre laminates and on numerical computations by a finite element model. It is shown that both quasi-static and dynamic tests led to qualitatively similar failure patterns; three characteristic contact force thresholds, corresponding to the main steps of damage progression, were identified and found to be equal for impact and indentation. On the other hand, an equal energy absorption resulted in a larger delaminated area in quasi-static than in dynamic tests, while the maximum displacement of the impactor (or indentor) was higher in the case of impact, suggesting a probably more severe fibre damage than in indentation. Secondly, the effect of different specimen dimensions and boundary conditions on its impact response was examined. Experimental testing showed that the relationships of delaminated area with two significant impact parameters, the absorbed energy and the maximum contact force, did not depend on the in-plane dimensions and on the support condition of the coupons. The possibility of predicting, by means of a simplified numerical computation, the occurrence of delaminations during a specific impact event is also discussed. A study about the compressive behaviour of impact damaged laminates is also presented. Unlike most of the contributions available about this subject, the results of compression after impact tests on thin laminates are described in which the global specimen buckling was not prevented. Two different quasi-isotropic stacking sequences, as well as two specimen geometries, were considered. It is shown that in the case of rectangular coupons the lay-up can significantly affect the damage induced by impact. Different buckling shapes were observed in laminates with different stacking sequences, in agreement with the results of numerical analysis. In addition, the experiments showed that impact damage can alter the buckling mode of the laminates in certain situations, whereas it did not affect the compressive strength in every case, depending on the buckling shape. Some considerations about the significance of the test method employed are also proposed. Finally, a comprehensive study is presented regarding the influence of pre-existing in-plane loads on the impact response of laminates. Impact events in several conditions, including both tensile and compressive preloads, both uniaxial and biaxial, were analysed by means of numerical finite element simulations; the case of laminates impacted in postbuckling conditions was also considered. The study focused on how the effect of preload varies with the span-to-thickness ratio of the specimen, which was found to be a key parameter. It is shown that a tensile preload has the strongest effect on the peak stresses at low span-to-thickness ratios, leading to a reduction of the minimum impact energy required to initiate damage, whereas this effect tends to disappear as the span-to-thickness ratio increases. On the other hand, a compression preload exhibits the most detrimental effects at medium span-to-thickness ratios, at which the laminate compressive strength and the critical instability load are close to each other, while the influence of preload can be negligible for thin plates or even beneficial for very thick plates. The possibility to obtain a better explanation of the experimental results described in the literature, in view of the present findings, is highlighted. Throughout the thesis the capabilities and limitations of the finite element model, which was implemented in an in-house program, are discussed. The program did not include any damage model of the material. It is shown that, although this kind of analysis can yield accurate results as long as damage has little effect on the overall mechanical properties of a laminate, it can be helpful in explaining some phenomena and also in distinguishing between what can be modelled without taking into account the material degradation and what requires an appropriate simulation of damage. Sommario. Questa tesi presenta una discussione su alcune tematiche specifiche riguardanti il comportamento dei compositi laminati soggetti ad impatto a bassa velocità. Tali tematiche sono state scelte per la loro importanza, oltre che per l’attenzione relativamente limitata ricevuta finora dalla comunità scientifica. La prima delle problematiche considerate è il confronto fra gli effetti prodotti da una prova sperimentale di impatto a bassa velocità e da una prova di indentazione quasi statica. Viene presentata un’analisi di entrambe le condizioni di prova, basata sui risultati di esperimenti condotti su laminati in fibra di carbonio e su calcoli numerici svolti con un modello ad elementi finiti. È mostrato che sia le prove quasi statiche sia quelle dinamiche portano a un danneggiamento con caratteristiche qualitativamente simili; tre valori di soglia caratteristici della forza di contatto, corrispondenti alle fasi principali di progressione del danno, sono stati individuati e stimati uguali per impatto e indentazione. D’altro canto lo stesso assorbimento di energia ha portato ad un’area delaminata maggiore nelle prove statiche rispetto a quelle dinamiche, mentre il massimo spostamento dell’impattatore (o indentatore) è risultato maggiore nel caso dell’impatto, indicando la probabilità di un danneggiamento delle fibre più severo rispetto al caso dell’indentazione. In secondo luogo è stato esaminato l’effetto di diverse dimensioni del provino e diverse condizioni al contorno sulla sua risposta all’impatto. Le prove sperimentali hanno mostrato che le relazioni fra l’area delaminata e due parametri di impatto significativi, l’energia assorbita e la massima forza di contatto, non dipendono dalle dimensioni nel piano dei provini e dalle loro condizioni di supporto. Viene anche discussa la possibilità di prevedere, per mezzo di un calcolo numerico semplificato, il verificarsi di delaminazioni durante un determinato caso di impatto. È presentato anche uno studio sul comportamento a compressione di laminati danneggiati da impatto. Diversamente della maggior parte della letteratura disponibile su questo argomento, vengono qui descritti i risultati di prove di compressione dopo impatto su laminati sottili durante le quali l’instabilità elastica globale dei provini non è stata impedita. Sono state considerate due differenti sequenze di laminazione quasi isotrope, oltre a due geometrie per i provini. Viene mostrato come nel caso di provini rettangolari la sequenza di laminazione possa influenzare sensibilmente il danno prodotto dall’impatto. Due diversi tipi di deformate in condizioni di instabilità sono stati osservati per laminati con diversa laminazione, in accordo con i risultati dell’analisi numerica. Gli esperimenti hanno mostrato inoltre che in certe situazioni il danno da impatto può alterare la deformata che il laminato assume in seguito ad instabilità; d’altra parte tale danno non ha sempre influenzato la resistenza a compressione, a seconda della deformata. Vengono proposte anche alcune considerazioni sulla significatività del metodo di prova utilizzato. Infine viene presentato uno studio esaustivo riguardo all’influenza di carichi membranali preesistenti sulla risposta all’impatto dei laminati. Sono stati analizzati con simulazioni numeriche ad elementi finiti casi di impatto in diverse condizioni di precarico, sia di trazione sia di compressione, sia monoassiali sia biassiali; è stato preso in considerazione anche il caso di laminati impattati in condizioni di postbuckling. Lo studio si è concentrato in particolare sulla dipendenza degli effetti del precarico dal rapporto larghezza-spessore del provino, che si è rivelato un parametro fondamentale. Viene illustrato che un precarico di trazione ha l’effetto più marcato sulle massime tensioni per bassi rapporti larghezza-spessore, portando ad una riduzione della minima energia di impatto necessaria per innescare il danneggiamento, mentre questo effetto tende a scomparire all’aumentare di tale rapporto. Il precarico di compressione evidenzia invece gli effetti più deleteri a rapporti larghezza-spessore intermedi, ai quali la resistenza a compressione del laminato e il suo carico critico di instabilità sono paragonabili, mentre l’influenza del precarico può essere trascurabile per piastre sottili o addirittura benefica per piastre molto spesse. Viene evidenziata la possibilità di trovare una spiegazione più soddisfacente dei risultati sperimentali riportati in letteratura, alla luce del presente contributo. Nel corso della tesi vengono anche discussi le potenzialità ed i limiti del modello ad elementi finiti utilizzato, che è stato implementato in un programma scritto in proprio. Il programma non comprende alcuna modellazione del danneggiamento del materiale. Viene però spiegato come, nonostante questo tipo di analisi possa portare a risultati accurati soltanto finché il danno ha scarsi effetti sulle proprietà meccaniche d’insieme del laminato, esso possa essere utile per spiegare alcuni fenomeni, oltre che per distinguere fra ciò che si può riprodurre senza tenere conto del degrado del materiale e ciò che invece richiede una simulazione adeguata del danneggiamento.

Relevância:

10.00% 10.00%

Publicador:

Resumo:

Two analytical models are proposed to describe two different mechanisms of lava tubes formation. A first model is introduced to describe the development of a solid crust in the central region of the channel, and the formation of a tube when crust widens until it reaches the leve\'es. The Newtonian assumption is considered and the steady state Navier- Stokes equation in a rectangular conduit is solved. A constant heat flux density assigned at the upper flow surface resumes the combined effects of two thermal processes: radiation and convection into the atmosphere. Advective terms are also included, by the introduction of velocity into the expression of temperature. Velocity is calculated as an average value over the channel width, so that lateral variations of temperature are neglected. As long as the upper flow surface cools, a solid layer develops, described as a plastic body, having a resistance to shear deformation. If the applied shear stress exceeds this resistance, crust breaks, otherwise, solid fragments present at the flow surface can weld together forming a continuous roof, as it happens in the sidewall flow regions. Variations of channel width, ground slope and effusion rate are analyzed, as parameters that strongly affect the shear stress values. Crust growing is favored when the channel widens, and tube formation is possible when the ground slope or the effusion rate reduce. A comparison of results is successfully made with data obtained from the analysis of pictures of actual flows. The second model describes the formation of a stable, well defined crust along both channel sides, their growing towards the center and their welding to form the tube roof. The fluid motion is described as in the model above. Thermal budget takes into account conduction into the atmosphere, and advection is included considering the velocity depending both on depth and channel width. The solidified crust has a non uniform thickness along the channel width. Stresses acting on the crust are calculated using the equations of the elastic thin plate, pinned at its ends. The model allows to calculate the distance where crust thickness is able to resist the drag of the underlying fluid and to sustain its weight by itself, and the level of the fluid can lower below the tube roof. Viscosity and thermal conductivity have been experimentally investigated through the use of a rotational viscosimeter. Analyzing samples coming from Mount Etna (2002) the following results have been obtained: the fluid is Newtonian and the thermal conductivity is constant in a range of temperature above the liquidus. For lower temperature, the fluid becomes non homogeneous, and the used experimental techniques are not able to detect any properties, because measurements are not reproducible.

Relevância:

10.00% 10.00%

Publicador:

Resumo:

The common thread of this thesis is the will of investigating properties and behavior of assemblies. Groups of objects display peculiar properties, which can be very far from the simple sum of respective components’ properties. This is truer, the smaller is inter-objects distance, i.e. the higher is their density, and the smaller is the container size. “Confinement” is in fact a key concept in many topics explored and here reported. It can be conceived as a spatial limitation, that yet gives origin to unexpected processes and phenomena based on inter-objects communication. Such phenomena eventually result in “non-linear properties”, responsible for the low predictability of large assemblies. Chapter 1 provides two insights on surface chemistry, namely (i) on a supramolecular assembly based on orthogonal forces, and (ii) on selective and sensitive fluorescent sensing in thin polymeric film. In chapters 2 to 4 confinement of molecules plays a major role. Most of the work focuses on FRET within core-shell nanoparticles, investigated both through a simulation model and through experiments. Exciting results of great applicative interest are drawn, such as a method of tuning emission wavelength at constant excitation, and a way of overcoming self-quenching processes by setting up a competitive deactivation channel. We envisage applications of these materials as labels for multiplexing analysis, and in all fields of fluorescence imaging, where brightness coupled with biocompatibility and water solubility is required. Adducts of nanoparticles and molecular photoswitches are investigated in the context of superresolution techniques for fluorescence microscopy. In chapter 5 a method is proposed to prepare a library of functionalized Pluronic F127, which gives access to a twofold “smart” nanomaterial, namely both (i)luminescent and (ii)surface-functionalized SCSSNPs. Focus shifts in chapter 6 to confinement effects in an upper size scale. Moving from nanometers to micrometers, we investigate the interplay between microparticles flowing in microchannels where a constriction affects at very long ranges structure and dynamics of the colloidal paste.

Relevância:

10.00% 10.00%

Publicador:

Resumo:

La tesi di Dottorato studia il flusso sanguigno tramite un codice agli elementi finiti (COMSOL Multiphysics). Nell’arteria è presente un catetere Doppler (in posizione concentrica o decentrata rispetto all’asse di simmetria) o di stenosi di varia forma ed estensione. Le arterie sono solidi cilindrici rigidi, elastici o iperelastici. Le arterie hanno diametri di 6 mm, 5 mm, 4 mm e 2 mm. Il flusso ematico è in regime laminare stazionario e transitorio, ed il sangue è un fluido non-Newtoniano di Casson, modificato secondo la formulazione di Gonzales & Moraga. Le analisi numeriche sono realizzate in domini tridimensionali e bidimensionali, in quest’ultimo caso analizzando l’interazione fluido-strutturale. Nei casi tridimensionali, le arterie (simulazioni fluidodinamiche) sono infinitamente rigide: ricavato il campo di pressione si procede quindi all’analisi strutturale, per determinare le variazioni di sezione e la permanenza del disturbo sul flusso. La portata sanguigna è determinata nei casi tridimensionali con catetere individuando tre valori (massimo, minimo e medio); mentre per i casi 2D e tridimensionali con arterie stenotiche la legge di pressione riproduce l’impulso ematico. La mesh è triangolare (2D) o tetraedrica (3D), infittita alla parete ed a valle dell’ostacolo, per catturare le ricircolazioni. Alla tesi sono allegate due appendici, che studiano con codici CFD la trasmissione del calore in microcanali e l’ evaporazione di gocce d’acqua in sistemi non confinati. La fluidodinamica nei microcanali è analoga all’emodinamica nei capillari. Il metodo Euleriano-Lagrangiano (simulazioni dell’evaporazione) schematizza la natura mista del sangue. La parte inerente ai microcanali analizza il transitorio a seguito dell’applicazione di un flusso termico variabile nel tempo, variando velocità in ingresso e dimensioni del microcanale. L’indagine sull’evaporazione di gocce è un’analisi parametrica in 3D, che esamina il peso del singolo parametro (temperatura esterna, diametro iniziale, umidità relativa, velocità iniziale, coefficiente di diffusione) per individuare quello che influenza maggiormente il fenomeno.

Relevância:

10.00% 10.00%

Publicador:

Resumo:

A novel design based on electric field-free open microwell arrays for the automated continuous-flow sorting of single or small clusters of cells is presented. The main feature of the proposed device is the parallel analysis of cell-cell and cell-particle interactions in each microwell of the array. High throughput sample recovery with a fast and separate transfer from the microsites to standard microtiter plates is also possible thanks to the flexible printed circuit board technology which permits to produce cost effective large area arrays featuring geometries compatible with laboratory equipment. The particle isolation is performed via negative dielectrophoretic forces which convey the particles’ into the microwells. Particles such as cells and beads flow in electrically active microchannels on whose substrate the electrodes are patterned. The introduction of particles within the microwells is automatically performed by generating the required feedback signal by a microscope-based optical counting and detection routine. In order to isolate a controlled number of particles we created two particular configurations of the electric field within the structure. The first one permits their isolation whereas the second one creates a net force which repels the particles from the microwell entrance. To increase the parallelism at which the cell-isolation function is implemented, a new technique based on coplanar electrodes to detect particle presence was implemented. A lock-in amplifying scheme was used to monitor the impedance of the channel perturbed by flowing particles in high-conductivity suspension mediums. The impedance measurement module was also combined with the dielectrophoretic focusing stage situated upstream of the measurement stage, to limit the measured signal amplitude dispersion due to the particles position variation within the microchannel. In conclusion, the designed system complies with the initial specifications making it suitable for cellomics and biotechnology applications.

Relevância:

10.00% 10.00%

Publicador:

Resumo:

The last decade has witnessed very fast development in microfabrication technologies. The increasing industrial applications of microfluidic systems call for more intensive and systematic knowledge on this newly emerging field. Especially for gaseous flow and heat transfer at microscale, the applicability of conventional theories developed at macro scale is not yet completely validated; this is mainly due to scarce experimental data available in literature for gas flows. The objective of this thesis is to investigate these unclear elements by analyzing forced convection for gaseous flows through microtubes and micro heat exchangers. Experimental tests have been performed with microtubes having various inner diameters, namely 750 m, 510 m and 170 m, over a wide range of Reynolds number covering the laminar region, the transitional zone and also the onset region of the turbulent regime. The results show that conventional theory is able to predict the flow friction factor when flow compressibility does not appear and the effect of fluid temperature-dependent properties is insignificant. A double-layered microchannel heat exchanger has been designed in order to study experimentally the efficiency of a gas-to-gas micro heat exchanger. This microdevice contains 133 parallel microchannels machined into polished PEEK plates for both the hot side and the cold side. The microchannels are 200 µm high, 200 µm wide and 39.8 mm long. The design of the micro device has been made in order to be able to test different materials as partition foil with flexible thickness. Experimental tests have been carried out for five different partition foils, with various mass flow rates and flow configurations. The experimental results indicate that the thermal performance of the countercurrent and cross flow micro heat exchanger can be strongly influenced by axial conduction in the partition foil separating the hot gas flow and cold gas flow.

Relevância:

10.00% 10.00%

Publicador:

Resumo:

The PhD project that will be presented in this thesis is focused on the study and optimization of the production process for the manufacturing of electrical powertrain components in the automotive field using the laser beam welding process (LBW). The objective is to define, through experimental activities, an optimized process condition for applications in the electrical field that can be generalized, that is, which guarantees its reproducibility as the types of connections vary and which represents the basis for extending the method to future applications in e-mobility sector. The work developed along two lines of research, the convergence of which made it possible to create prototypes of battery modules based on different types of lithium-ion cells and stator windings for electric motors. On the one hand, the different welding configurations involving the production of batteries based on pouch cells and therefore the welding of aluminum and copper in dissimilar configuration were studied, while for the prismatic cells only one configuration was analyzed. On the other hand, the welding of pure copper hairpins with rectangular shape in edge joint configuration was studied for the production of stator windings. The experimental tests carried out have demonstrated the feasibility of using the LBW process for the production of electric powertrain components entirely designed and developed internally as the types of materials and welding configurations vary; the methodologies required for the characterization methods, necessary for the end-of-line tests, for the evaluation of the properties of the different joint configurations and components (battery and electric motor) were also defined with the aim of obtaining the best performance. The entire doctorate program was conducted in collaboration with Ferrari Auto S.p.A. and the direct industrial application of the issues addressed has been faced.

Relevância:

10.00% 10.00%

Publicador:

Resumo:

Using Computational Wind Engineering, CWE, for solving wind-related problems is still a challenging task today, mainly due to the high computational cost required to obtain trustworthy simulations. In particular, the Large Eddy Simulation, LES, has been widely used for evaluating wind loads on buildings. The present thesis assesses the capability of LES as a design tool for wind loading predictions through three cases. The first case is using LES for simulating the wind field around a ground-mounted rectangular prism in Atmospheric Boundary Layer (ABL) flow. The numerical results are validated with experimental results for seven wind attack angles, giving a global understanding of the model performance. The case with the worst model behaviour is investigated, including the spatial distribution of the pressure coefficients and their discrepancies with respect to experimental results. The effects of some numerical parameters are investigated for this case to understand their effectiveness in modifying the obtained numerical results. The second case is using LES for investigating the wind effects on a real high-rise building, aiming at validating the performance of LES as a design tool in practical applications. The numerical results are validated with the experimental results in terms of the distribution of the pressure statistics and the global forces. The mesh sensitivity and the computational cost are discussed. The third case is using LES for studying the wind effects on the new large-span roof over the Bologna stadium. The dynamic responses are analyzed and design envelopes for the structure are obtained. Although it is a numerical simulation before the traditional wind tunnel tests, i.e. the validation of the numerical results are not performed, the preliminary evaluations can effectively inform later investigations and provide the final design processes with deeper confidence regarding the absence of potentially unexpected behaviours.

Relevância:

10.00% 10.00%

Publicador:

Resumo:

Sound radiators based on forced vibrations of plates are becoming widely employed, mainly for active sound enhancement and noise cancelling systems, both in music and automotive environment. Active sound enhancement solutions based on electromagnetic shakers hence find increasing interest. Mostly diffused applications deal with active noise control (ANC) and active vibration control systems for improving the acoustic experience inside or outside the vehicle. This requires investigating vibrational and, consequently, vibro-acoustic characteristics of vehicles. Therefore, simulation and processing methods capable of reducing the calculation time and providing high-accuracy results, are strongly demanded. In this work, an ideal case study on rectangular plates in fully clamped conditions preceded a real case analysis on vehicle panels. The sound radiation generated by a vibrating flat or shallow surface can be calculated by means of Rayleigh’s integral. The analytical solution of the problem is here calculated implementing the equations in MATLAB. Then, the results are compared with a numerical model developed in COMSOL Multiphysics, employing Finite Element Method (FEM). A very good matching between analytical and numerical solutions is shown, thus the cross validation of the two methods is achieved. The shift to the real case study, on a McLaren super car, led to the development of a mixed analytical-numerical method. Optimum results were obtained with mini shakers excitement, showing good matching of the recorded SPL with the calculated one over all the selected frequency band. In addition, a set of directivity measurements of the hood were realized, to start studying the spatiality of sound, which is fundamental to active noise control systems.