14 resultados para Real-world scenarios
em AMS Tesi di Dottorato - Alm@DL - Università di Bologna
Resumo:
Logistics involves planning, managing, and organizing the flows of goods from the point of origin to the point of destination in order to meet some requirements. Logistics and transportation aspects are very important and represent a relevant costs for producing and shipping companies, but also for public administration and private citizens. The optimization of resources and the improvement in the organization of operations is crucial for all branches of logistics, from the operation management to the transportation. As we will have the chance to see in this work, optimization techniques, models, and algorithms represent important methods to solve the always new and more complex problems arising in different segments of logistics. Many operation management and transportation problems are related to the optimization class of problems called Vehicle Routing Problems (VRPs). In this work, we consider several real-world deterministic and stochastic problems that are included in the wide class of the VRPs, and we solve them by means of exact and heuristic methods. We treat three classes of real-world routing and logistics problems. We deal with one of the most important tactical problems that arises in the managing of the bike sharing systems, that is the Bike sharing Rebalancing Problem (BRP). We propose models and algorithms for real-world earthwork optimization problems. We describe the 3DP process and we highlight several optimization issues in 3DP. Among those, we define the problem related to the tool path definition in the 3DP process, the 3D Routing Problem (3DRP), which is a generalization of the arc routing problem. We present an ILP model and several heuristic algorithms to solve the 3DRP.
Resumo:
Visual tracking is the problem of estimating some variables related to a target given a video sequence depicting the target. Visual tracking is key to the automation of many tasks, such as visual surveillance, robot or vehicle autonomous navigation, automatic video indexing in multimedia databases. Despite many years of research, long term tracking in real world scenarios for generic targets is still unaccomplished. The main contribution of this thesis is the definition of effective algorithms that can foster a general solution to visual tracking by letting the tracker adapt to mutating working conditions. In particular, we propose to adapt two crucial components of visual trackers: the transition model and the appearance model. The less general but widespread case of tracking from a static camera is also considered and a novel change detection algorithm robust to sudden illumination changes is proposed. Based on this, a principled adaptive framework to model the interaction between Bayesian change detection and recursive Bayesian trackers is introduced. Finally, the problem of automatic tracker initialization is considered. In particular, a novel solution for categorization of 3D data is presented. The novel category recognition algorithm is based on a novel 3D descriptors that is shown to achieve state of the art performances in several applications of surface matching.
Resumo:
L’attività di ricerca contenuta in questa tesi si è concentrata nello sviluppo e nell’implementazione di tecniche per la co-simulazione e il co-progetto non lineare/elettromagnetico di sistemi wireless non convenzionali. Questo lavoro presenta un metodo rigoroso per considerare le interazioni tra due sistemi posti sia in condizioni di campo vicino che in condizioni di campo lontano. In sostanza, gli effetti del sistema trasmittente sono rappresentati da un generatore equivalente di Norton posto in parallelo all’antenna del sistema ricevente, calcolato per mezzo del teorema di reciprocità e del teorema di equivalenza. La correttezza del metodo è stata verificata per mezzo di simulazioni e misure, concordi tra loro. La stessa teoria, ampliata con l’introduzione degli effetti di scattering, è stata usata per valutare una condizione analoga, dove l’elemento trasmittente coincide con quello ricevente (DIE) contenuto all’interno di una struttura metallica (package). I risultati sono stati confrontati con i medesimi ottenibili tramite tecniche FEM e FDTD/FIT, che richiedono tempi di simulazione maggiori di un ordine di grandezza. Grazie ai metodi di co-simulazione non lineari/EM sopra esposti, è stato progettato e verificato un sistema di localizzazione e identificazione di oggetti taggati posti in ambiente indoor. Questo è stato ottenuto dotando il sistema di lettura, denominato RID (Remotely Identify and Detect), di funzioni di scansione angolare e della tecnica di RADAR mono-pulse. Il sistema sperimentale, creato con dispositivi low cost, opera a 2.5 GHz ed ha le dimensioni paragonabili ad un normale PDA. E’ stato sperimentata la capacità del RID di localizzare, in scenari indoor, oggetti statici e in movimento.
Resumo:
The continuous advancements and enhancements of wireless systems are enabling new compelling scenarios where mobile services can adapt according to the current execution context, represented by the computational resources available at the local device, current physical location, people in physical proximity, and so forth. Such services called context-aware require the timely delivery of all relevant information describing the current context, and that introduces several unsolved complexities, spanning from low-level context data transmission up to context data storage and replication into the mobile system. In addition, to ensure correct and scalable context provisioning, it is crucial to integrate and interoperate with different wireless technologies (WiFi, Bluetooth, etc.) and modes (infrastructure-based and ad-hoc), and to use decentralized solutions to store and replicate context data on mobile devices. These challenges call for novel middleware solutions, here called Context Data Distribution Infrastructures (CDDIs), capable of delivering relevant context data to mobile devices, while hiding all the issues introduced by data distribution in heterogeneous and large-scale mobile settings. This dissertation thoroughly analyzes CDDIs for mobile systems, with the main goal of achieving a holistic approach to the design of such type of middleware solutions. We discuss the main functions needed by context data distribution in large mobile systems, and we claim the precise definition and clean respect of quality-based contracts between context consumers and CDDI to reconfigure main middleware components at runtime. We present the design and the implementation of our proposals, both in simulation-based and in real-world scenarios, along with an extensive evaluation that confirms the technical soundness of proposed CDDI solutions. Finally, we consider three highly heterogeneous scenarios, namely disaster areas, smart campuses, and smart cities, to better remark the wide technical validity of our analysis and solutions under different network deployments and quality constraints.
Resumo:
Machine learning comprises a series of techniques for automatic extraction of meaningful information from large collections of noisy data. In many real world applications, data is naturally represented in structured form. Since traditional methods in machine learning deal with vectorial information, they require an a priori form of preprocessing. Among all the learning techniques for dealing with structured data, kernel methods are recognized to have a strong theoretical background and to be effective approaches. They do not require an explicit vectorial representation of the data in terms of features, but rely on a measure of similarity between any pair of objects of a domain, the kernel function. Designing fast and good kernel functions is a challenging problem. In the case of tree structured data two issues become relevant: kernel for trees should not be sparse and should be fast to compute. The sparsity problem arises when, given a dataset and a kernel function, most structures of the dataset are completely dissimilar to one another. In those cases the classifier has too few information for making correct predictions on unseen data. In fact, it tends to produce a discriminating function behaving as the nearest neighbour rule. Sparsity is likely to arise for some standard tree kernel functions, such as the subtree and subset tree kernel, when they are applied to datasets with node labels belonging to a large domain. A second drawback of using tree kernels is the time complexity required both in learning and classification phases. Such a complexity can sometimes prevents the kernel application in scenarios involving large amount of data. This thesis proposes three contributions for resolving the above issues of kernel for trees. A first contribution aims at creating kernel functions which adapt to the statistical properties of the dataset, thus reducing its sparsity with respect to traditional tree kernel functions. Specifically, we propose to encode the input trees by an algorithm able to project the data onto a lower dimensional space with the property that similar structures are mapped similarly. By building kernel functions on the lower dimensional representation, we are able to perform inexact matchings between different inputs in the original space. A second contribution is the proposal of a novel kernel function based on the convolution kernel framework. Convolution kernel measures the similarity of two objects in terms of the similarities of their subparts. Most convolution kernels are based on counting the number of shared substructures, partially discarding information about their position in the original structure. The kernel function we propose is, instead, especially focused on this aspect. A third contribution is devoted at reducing the computational burden related to the calculation of a kernel function between a tree and a forest of trees, which is a typical operation in the classification phase and, for some algorithms, also in the learning phase. We propose a general methodology applicable to convolution kernels. Moreover, we show an instantiation of our technique when kernels such as the subtree and subset tree kernels are employed. In those cases, Direct Acyclic Graphs can be used to compactly represent shared substructures in different trees, thus reducing the computational burden and storage requirements.
Resumo:
Mixed integer programming is up today one of the most widely used techniques for dealing with hard optimization problems. On the one side, many practical optimization problems arising from real-world applications (such as, e.g., scheduling, project planning, transportation, telecommunications, economics and finance, timetabling, etc) can be easily and effectively formulated as Mixed Integer linear Programs (MIPs). On the other hand, 50 and more years of intensive research has dramatically improved on the capability of the current generation of MIP solvers to tackle hard problems in practice. However, many questions are still open and not fully understood, and the mixed integer programming community is still more than active in trying to answer some of these questions. As a consequence, a huge number of papers are continuously developed and new intriguing questions arise every year. When dealing with MIPs, we have to distinguish between two different scenarios. The first one happens when we are asked to handle a general MIP and we cannot assume any special structure for the given problem. In this case, a Linear Programming (LP) relaxation and some integrality requirements are all we have for tackling the problem, and we are ``forced" to use some general purpose techniques. The second one happens when mixed integer programming is used to address a somehow structured problem. In this context, polyhedral analysis and other theoretical and practical considerations are typically exploited to devise some special purpose techniques. This thesis tries to give some insights in both the above mentioned situations. The first part of the work is focused on general purpose cutting planes, which are probably the key ingredient behind the success of the current generation of MIP solvers. Chapter 1 presents a quick overview of the main ingredients of a branch-and-cut algorithm, while Chapter 2 recalls some results from the literature in the context of disjunctive cuts and their connections with Gomory mixed integer cuts. Chapter 3 presents a theoretical and computational investigation of disjunctive cuts. In particular, we analyze the connections between different normalization conditions (i.e., conditions to truncate the cone associated with disjunctive cutting planes) and other crucial aspects as cut rank, cut density and cut strength. We give a theoretical characterization of weak rays of the disjunctive cone that lead to dominated cuts, and propose a practical method to possibly strengthen those cuts arising from such weak extremal solution. Further, we point out how redundant constraints can affect the quality of the generated disjunctive cuts, and discuss possible ways to cope with them. Finally, Chapter 4 presents some preliminary ideas in the context of multiple-row cuts. Very recently, a series of papers have brought the attention to the possibility of generating cuts using more than one row of the simplex tableau at a time. Several interesting theoretical results have been presented in this direction, often revisiting and recalling other important results discovered more than 40 years ago. However, is not clear at all how these results can be exploited in practice. As stated, the chapter is a still work-in-progress and simply presents a possible way for generating two-row cuts from the simplex tableau arising from lattice-free triangles and some preliminary computational results. The second part of the thesis is instead focused on the heuristic and exact exploitation of integer programming techniques for hard combinatorial optimization problems in the context of routing applications. Chapters 5 and 6 present an integer linear programming local search algorithm for Vehicle Routing Problems (VRPs). The overall procedure follows a general destroy-and-repair paradigm (i.e., the current solution is first randomly destroyed and then repaired in the attempt of finding a new improved solution) where a class of exponential neighborhoods are iteratively explored by heuristically solving an integer programming formulation through a general purpose MIP solver. Chapters 7 and 8 deal with exact branch-and-cut methods. Chapter 7 presents an extended formulation for the Traveling Salesman Problem with Time Windows (TSPTW), a generalization of the well known TSP where each node must be visited within a given time window. The polyhedral approaches proposed for this problem in the literature typically follow the one which has been proven to be extremely effective in the classical TSP context. Here we present an overall (quite) general idea which is based on a relaxed discretization of time windows. Such an idea leads to a stronger formulation and to stronger valid inequalities which are then separated within the classical branch-and-cut framework. Finally, Chapter 8 addresses the branch-and-cut in the context of Generalized Minimum Spanning Tree Problems (GMSTPs) (i.e., a class of NP-hard generalizations of the classical minimum spanning tree problem). In this chapter, we show how some basic ideas (and, in particular, the usage of general purpose cutting planes) can be useful to improve on branch-and-cut methods proposed in the literature.
Resumo:
Crew scheduling and crew rostering are similar and related problems which can be solved by similar procedures. So far, the existing solution methods usually create a model for each one of these problems (scheduling and rostering), and when they are solved together in some cases an interaction between models is considered in order to obtain a better solution. A single set covering model to solve simultaneously both problems is presented here, where the total quantity of drivers needed is directly considered and optimized. This integration allows to optimize all of the depots at the same time, while traditional approaches needed to work depot by depot, and also it allows to see and manage the relationship between scheduling and rostering, which was known in some degree but usually not easy to quantify as this model permits. Recent research in the area of crew scheduling and rostering has stated that one of the current challenges to be achieved is to determine a schedule where crew fatigue, which depends mainly on the quality of the rosters created, is reduced. In this approach rosters are constructed in such way that stable working hours are used in every week of work, and a change to a different shift is done only using free days in between to make easier the adaptation to the new working hours. Computational results for real-world-based instances are presented. Instances are geographically diverse to test the performance of the procedures and the model in different scenarios.
Resumo:
The term Ambient Intelligence (AmI) refers to a vision on the future of the information society where smart, electronic environment are sensitive and responsive to the presence of people and their activities (Context awareness). In an ambient intelligence world, devices work in concert to support people in carrying out their everyday life activities, tasks and rituals in an easy, natural way using information and intelligence that is hidden in the network connecting these devices. This promotes the creation of pervasive environments improving the quality of life of the occupants and enhancing the human experience. AmI stems from the convergence of three key technologies: ubiquitous computing, ubiquitous communication and natural interfaces. Ambient intelligent systems are heterogeneous and require an excellent cooperation between several hardware/software technologies and disciplines, including signal processing, networking and protocols, embedded systems, information management, and distributed algorithms. Since a large amount of fixed and mobile sensors embedded is deployed into the environment, the Wireless Sensor Networks is one of the most relevant enabling technologies for AmI. WSN are complex systems made up of a number of sensor nodes which can be deployed in a target area to sense physical phenomena and communicate with other nodes and base stations. These simple devices typically embed a low power computational unit (microcontrollers, FPGAs etc.), a wireless communication unit, one or more sensors and a some form of energy supply (either batteries or energy scavenger modules). WNS promises of revolutionizing the interactions between the real physical worlds and human beings. Low-cost, low-computational power, low energy consumption and small size are characteristics that must be taken into consideration when designing and dealing with WSNs. To fully exploit the potential of distributed sensing approaches, a set of challengesmust be addressed. Sensor nodes are inherently resource-constrained systems with very low power consumption and small size requirements which enables than to reduce the interference on the physical phenomena sensed and to allow easy and low-cost deployment. They have limited processing speed,storage capacity and communication bandwidth that must be efficiently used to increase the degree of local ”understanding” of the observed phenomena. A particular case of sensor nodes are video sensors. This topic holds strong interest for a wide range of contexts such as military, security, robotics and most recently consumer applications. Vision sensors are extremely effective for medium to long-range sensing because vision provides rich information to human operators. However, image sensors generate a huge amount of data, whichmust be heavily processed before it is transmitted due to the scarce bandwidth capability of radio interfaces. In particular, in video-surveillance, it has been shown that source-side compression is mandatory due to limited bandwidth and delay constraints. Moreover, there is an ample opportunity for performing higher-level processing functions, such as object recognition that has the potential to drastically reduce the required bandwidth (e.g. by transmitting compressed images only when something ‘interesting‘ is detected). The energy cost of image processing must however be carefully minimized. Imaging could play and plays an important role in sensing devices for ambient intelligence. Computer vision can for instance be used for recognising persons and objects and recognising behaviour such as illness and rioting. Having a wireless camera as a camera mote opens the way for distributed scene analysis. More eyes see more than one and a camera system that can observe a scene from multiple directions would be able to overcome occlusion problems and could describe objects in their true 3D appearance. In real-time, these approaches are a recently opened field of research. In this thesis we pay attention to the realities of hardware/software technologies and the design needed to realize systems for distributed monitoring, attempting to propose solutions on open issues and filling the gap between AmI scenarios and hardware reality. The physical implementation of an individual wireless node is constrained by three important metrics which are outlined below. Despite that the design of the sensor network and its sensor nodes is strictly application dependent, a number of constraints should almost always be considered. Among them: • Small form factor to reduce nodes intrusiveness. • Low power consumption to reduce battery size and to extend nodes lifetime. • Low cost for a widespread diffusion. These limitations typically result in the adoption of low power, low cost devices such as low powermicrocontrollers with few kilobytes of RAMand tenth of kilobytes of program memory with whomonly simple data processing algorithms can be implemented. However the overall computational power of the WNS can be very large since the network presents a high degree of parallelism that can be exploited through the adoption of ad-hoc techniques. Furthermore through the fusion of information from the dense mesh of sensors even complex phenomena can be monitored. In this dissertation we present our results in building several AmI applications suitable for a WSN implementation. The work can be divided into two main areas:Low Power Video Sensor Node and Video Processing Alghoritm and Multimodal Surveillance . Low Power Video Sensor Nodes and Video Processing Alghoritms In comparison to scalar sensors, such as temperature, pressure, humidity, velocity, and acceleration sensors, vision sensors generate much higher bandwidth data due to the two-dimensional nature of their pixel array. We have tackled all the constraints listed above and have proposed solutions to overcome the current WSNlimits for Video sensor node. We have designed and developed wireless video sensor nodes focusing on the small size and the flexibility of reuse in different applications. The video nodes target a different design point: the portability (on-board power supply, wireless communication), a scanty power budget (500mW),while still providing a prominent level of intelligence, namely sophisticated classification algorithmand high level of reconfigurability. We developed two different video sensor node: The device architecture of the first one is based on a low-cost low-power FPGA+microcontroller system-on-chip. The second one is based on ARM9 processor. Both systems designed within the above mentioned power envelope could operate in a continuous fashion with Li-Polymer battery pack and solar panel. Novel low power low cost video sensor nodes which, in contrast to sensors that just watch the world, are capable of comprehending the perceived information in order to interpret it locally, are presented. Featuring such intelligence, these nodes would be able to cope with such tasks as recognition of unattended bags in airports, persons carrying potentially dangerous objects, etc.,which normally require a human operator. Vision algorithms for object detection, acquisition like human detection with Support Vector Machine (SVM) classification and abandoned/removed object detection are implemented, described and illustrated on real world data. Multimodal surveillance: In several setup the use of wired video cameras may not be possible. For this reason building an energy efficient wireless vision network for monitoring and surveillance is one of the major efforts in the sensor network community. Energy efficiency for wireless smart camera networks is one of the major efforts in distributed monitoring and surveillance community. For this reason, building an energy efficient wireless vision network for monitoring and surveillance is one of the major efforts in the sensor network community. The Pyroelectric Infra-Red (PIR) sensors have been used to extend the lifetime of a solar-powered video sensor node by providing an energy level dependent trigger to the video camera and the wireless module. Such approach has shown to be able to extend node lifetime and possibly result in continuous operation of the node.Being low-cost, passive (thus low-power) and presenting a limited form factor, PIR sensors are well suited for WSN applications. Moreover techniques to have aggressive power management policies are essential for achieving long-termoperating on standalone distributed cameras needed to improve the power consumption. We have used an adaptive controller like Model Predictive Control (MPC) to help the system to improve the performances outperforming naive power management policies.
Resumo:
The surface electrocardiogram (ECG) is an established diagnostic tool for the detection of abnormalities in the electrical activity of the heart. The interest of the ECG, however, extends beyond the diagnostic purpose. In recent years, studies in cognitive psychophysiology have related heart rate variability (HRV) to memory performance and mental workload. The aim of this thesis was to analyze the variability of surface ECG derived rhythms, at two different time scales: the discrete-event time scale, typical of beat-related features (Objective I), and the “continuous” time scale of separated sources in the ECG (Objective II), in selected scenarios relevant to psychophysiological and clinical research, respectively. Objective I) Joint time-frequency and non-linear analysis of HRV was carried out, with the goal of assessing psychophysiological workload (PPW) in response to working memory engaging tasks. Results from fourteen healthy young subjects suggest the potential use of the proposed indices in discriminating PPW levels in response to varying memory-search task difficulty. Objective II) A novel source-cancellation method based on morphology clustering was proposed for the estimation of the atrial wavefront in atrial fibrillation (AF) from body surface potential maps. Strong direct correlation between spectral concentration (SC) of atrial wavefront and temporal variability of the spectral distribution was shown in persistent AF patients, suggesting that with higher SC, shorter observation time is required to collect spectral distribution, from which the fibrillatory rate is estimated. This could be time and cost effective in clinical decision-making. The results held for reduced leads sets, suggesting that a simplified setup could also be considered, further reducing the costs. In designing the methods of this thesis, an online signal processing approach was kept, with the goal of contributing to real-world applicability. An algorithm for automatic assessment of ambulatory ECG quality, and an automatic ECG delineation algorithm were designed and validated.
Resumo:
Cost, performance and availability considerations are forcing even the most conservative high-integrity embedded real-time systems industry to migrate from simple hardware processors to ones equipped with caches and other acceleration features. This migration disrupts the practices and solutions that industry had developed and consolidated over the years to perform timing analysis. Industry that are confident with the efficiency/effectiveness of their verification and validation processes for old-generation processors, do not have sufficient insight on the effects of the migration to cache-equipped processors. Caches are perceived as an additional source of complexity, which has potential for shattering the guarantees of cost- and schedule-constrained qualification of their systems. The current industrial approach to timing analysis is ill-equipped to cope with the variability incurred by caches. Conversely, the application of advanced WCET analysis techniques on real-world industrial software, developed without analysability in mind, is hardly feasible. We propose a development approach aimed at minimising the cache jitters, as well as at enabling the application of advanced WCET analysis techniques to industrial systems. Our approach builds on:(i) identification of those software constructs that may impede or complicate timing analysis in industrial-scale systems; (ii) elaboration of practical means, under the model-driven engineering (MDE) paradigm, to enforce the automated generation of software that is analyzable by construction; (iii) implementation of a layout optimisation method to remove cache jitters stemming from the software layout in memory, with the intent of facilitating incremental software development, which is of high strategic interest to industry. The integration of those constituents in a structured approach to timing analysis achieves two interesting properties: the resulting software is analysable from the earliest releases onwards - as opposed to becoming so only when the system is final - and more easily amenable to advanced timing analysis by construction, regardless of the system scale and complexity.
Resumo:
The research presented in my PhD thesis is part of a wider European project, FishPopTrace, focused on traceability of fish populations and products. My work was aimed at developing and analyzing novel genetic tools for a widely distributed marine fish species, the European hake (Merluccius merluccius), in order to investigate population genetic structure and explore potential applications to traceability scenarios. A total of 395 SNPs (Single Nucleotide Polymorphisms) were discovered from a massive collection of Expressed Sequence Tags, obtained by high-throughput sequencing, and validated on 19 geographic samples from Atlantic and Mediterranean. Genome-scan approaches were applied to identify polymorphisms on genes potentially under divergent selection (outlier SNPs), showing higher genetic differentiation among populations respect to the average observed across loci. Comparative analysis on population structure were carried out on putative neutral and outlier loci at wide (Atlantic and Mediterranean samples) and regional (samples within each basin) spatial scales, to disentangle the effects of demographic and adaptive evolutionary forces on European hake populations genetic structure. Results demonstrated the potential of outlier loci to unveil fine scale genetic structure, possibly identifying locally adapted populations, despite the weak signal showed from putative neutral SNPs. The application of outlier SNPs within the framework of fishery resources management was also explored. A minimum panel of SNP markers showing maximum discriminatory power was selected and applied to a traceability scenario aiming at identifying the basin (and hence the stock) of origin, Atlantic or Mediterranean, of individual fish. This case study illustrates how molecular analytical technologies have operational potential in real-world contexts, and more specifically, potential to support fisheries control and enforcement and fish and fish product traceability.
Resumo:
The aim of the present work is to contribute to a better understanding of the relation between organization theory and management practice. It is organized as a collection of two papers, a theoretical and conceptual contribution and an ethnographic study. The first paper is concerned with systematizing different literatures inside and outside the field of organization studies that deal with the theory-practice relation. After identifying a series of positions to the theory-practice debate and unfolding some of their implicit assumptions and limitations, a new position called entwinement is developed in order to overcome status quo through reconciliation and integration. Accordingly, the paper proposes to reconceptualize theory and practice as a circular iterative process of action and cognition, science and common-sense enacted in the real world both by organization scholars and practitioners according to purposes at hand. The second paper is the ethnographic study of an encounter between two groups of expert academics and practitioners occasioned by a one-year executive business master in an international business school. The research articulates a process view of the knowledge exchange between management academics and practitioners in particular and between individuals belonging to different communities of practice, in general, and emphasizes its dynamic, relational and transformative mechanisms. Findings show that when they are given the chance to interact, academics and practitioners set up local provisional relations that enable them to act as change intermediaries vis-a-vis each other’s worlds, without tying themselves irremediably to each other and to the scenarios they conjointly projected during the master’s experience. Finally, the study shows that provisional relations were accompanied by a recursive shift in knowledge modes. While interacting, academics passed from theory to practical theorizing, practitioners passed from an involved practical mode to a reflexive and quasi-theoretical one, and then, as exchanges proceeded, the other way around.
Resumo:
Decomposition based approaches are recalled from primal and dual point of view. The possibility of building partially disaggregated reduced master problems is investigated. This extends the idea of aggregated-versus-disaggregated formulation to a gradual choice of alternative level of aggregation. Partial aggregation is applied to the linear multicommodity minimum cost flow problem. The possibility of having only partially aggregated bundles opens a wide range of alternatives with different trade-offs between the number of iterations and the required computation for solving it. This trade-off is explored for several sets of instances and the results are compared with the ones obtained by directly solving the natural node-arc formulation. An iterative solution process to the route assignment problem is proposed, based on the well-known Frank Wolfe algorithm. In order to provide a first feasible solution to the Frank Wolfe algorithm, a linear multicommodity min-cost flow problem is solved to optimality by using the decomposition techniques mentioned above. Solutions of this problem are useful for network orientation and design, especially in relation with public transportation systems as the Personal Rapid Transit. A single-commodity robust network design problem is addressed. In this, an undirected graph with edge costs is given together with a discrete set of balance matrices, representing different supply/demand scenarios. The goal is to determine the minimum cost installation of capacities on the edges such that the flow exchange is feasible for every scenario. A set of new instances that are computationally hard for the natural flow formulation are solved by means of a new heuristic algorithm. Finally, an efficient decomposition-based heuristic approach for a large scale stochastic unit commitment problem is presented. The addressed real-world stochastic problem employs at its core a deterministic unit commitment planning model developed by the California Independent System Operator (ISO).
Resumo:
The development of High-Integrity Real-Time Systems has a high footprint in terms of human, material and schedule costs. Factoring functional, reusable logic in the application favors incremental development and contains costs. Yet, achieving incrementality in the timing behavior is a much harder problem. Complex features at all levels of the execution stack, aimed to boost average-case performance, exhibit timing behavior highly dependent on execution history, which wrecks time composability and incrementaility with it. Our goal here is to restitute time composability to the execution stack, working bottom up across it. We first characterize time composability without making assumptions on the system architecture or the software deployment to it. Later, we focus on the role played by the real-time operating system in our pursuit. Initially we consider single-core processors and, becoming less permissive on the admissible hardware features, we devise solutions that restore a convincing degree of time composability. To show what can be done for real, we developed TiCOS, an ARINC-compliant kernel, and re-designed ORK+, a kernel for Ada Ravenscar runtimes. In that work, we added support for limited-preemption to ORK+, an absolute premiere in the landscape of real-word kernels. Our implementation allows resource sharing to co-exist with limited-preemptive scheduling, which extends state of the art. We then turn our attention to multicore architectures, first considering partitioned systems, for which we achieve results close to those obtained for single-core processors. Subsequently, we shy away from the over-provision of those systems and consider less restrictive uses of homogeneous multiprocessors, where the scheduling algorithm is key to high schedulable utilization. To that end we single out RUN, a promising baseline, and extend it to SPRINT, which supports sporadic task sets, hence matches real-world industrial needs better. To corroborate our results we present findings from real-world case studies from avionic industry.