4 resultados para Rat Sensory Neurons
em AMS Tesi di Dottorato - Alm@DL - Università di Bologna
Resumo:
The enteric nervous system regulates autonomously from the central nervous system all the reflex pathways that control blood flow, motility, water and electrolyte transport and acid secretion. The ability of the gut to function in isolation is one of the most intriguing phenomenons in neurogastroenterology. This requires coding of sensory stimuli by cells in the gut wall. Enteric neurons are prominent candidates to relay mechanosensitivity. Surprisingly, the identity of mechanosensitive neurons in the enteric nervous system as well as the appropriate stimulus modality is unknown despite the evidence that enteric neurons respond to sustained distension. Objectives: The aim of our study was to record from mechanosensitive neurons using physiological stimulus modalities. Identification of sensory neurons is of central importance to understand sensory transmission under normal conditions and in gut diseases associated with sensorimotor dysfunctions, such as Irritable Bowel Syndrome. Only then it will be possible to identify novel targets that help to normalise sensory functions. Methods: We used guinea-pig ileum myenteric plexus preparations and recorded responses of all neurons in a given ganglion with a fast neuroimaging technique based on voltage sensitive dyes. To evoke a mechanical response we used two different kinds of stimuli: firstly we applied a local mechanical distortion of the ganglion surface with von Frey hair. Secondarily we mimic the ganglia deformation during physiological movements of myenteric ganglia in a freely contracting ileal preparation. We were able to reliably and reproducibly mimic this distortion by intraganglionic injections of small volumes of oxygenated and buffered Krebs solution using stimulus parameters that correspond to single contractions. We also performed in every ganglion tested, electrical stimulations to evoke fast excitatory postsynaptic potentials. Immunohistochemistry reactions were done with antibodies against Calbindin and NeuN, considered markers for sensory neurons. Results: Recordings were performed in 46 ganglia from 31 guinea pigs. In every ganglion tested we found from 1 to 21 (from 3% to 62%) responding cells with a median value of 7 (24% of the total number of neurons). The response consisted of an almost instantaneous spike discharge that showed adaptation. The median value of the action potential frequency in the responding neurons was 2.0 Hz, with a recording time of 1255 ms. The spike discharge lasted for 302 ± 231 ms and occurred only during the initial deformation phase. During sustained deformation no spike discharge was observed. The response was reproducible and was a direct activation of the enteric neurons since it remained after synaptic blockade with hexamethonium or ω-conotoxin and after long time perfusion with capsaicin. Muscle tone appears not to be required for activation of mechanosensory neurons. Mechanosensory neurons showed a response to mechanical stimulation related to the stimulus strength. All mechanosensory neurons received fast synaptic inputs. There was no correlation between mechanosensitivity and Calbindin-IR and NeuN-IR (44% of mechanosensitive neurones Calb-IR-/NeuN-IR-). Conclusions: We identified mechanosensitive neurons in the myenteric plexus of the guinea pig ileum which responded to brief deformation. These cells appear to be rapidly accommodating neurons which respond to dynamic change. All mechanosensitive neurons received fast synaptic input suggesting that their activity can be highly modulated by other neurons and hence there is a low stimulus fidelity which allows adjusting the gain in a sensory network. Mechanosensitivity appears to be a common feature of many enteric neurons belonging to different functional classes. This supports the existence of multifunctional enteric neurons which may fulfil sensory, integrative and motor functions.
Resumo:
Il trigono della vescica urinaria (UBT) è un'area limitata attraverso la quale penetrano nella vescica la maggior parte dei vasi e fibre e in cui le fibre nervose e neuroni intramurali sono più concentrati. Mediante l’utilizzo combinato di un tracciante retrogrado(FB) e dell’immunoistochimica sono stati valutati il fenotipo e l’area del soma dei neuroni dei gangli spinali (DRG), dei neuroni post-gangliari, il fenotipo dei gangli della catena simpatica (STG) e i gangli mesenterici caudali (CMG) innervanti l’UBT. - Caratterizzazione dei neuroni dei DRG con: peptide correlato al gene della calcitonina (CGRP)(30±3%, 29±3%, rispettivamente), sostanza P(SP)(26±8%, 27±12%), ossido nitrico sintasi neuronale (nNOS)(21±4%; 26±7%), neurofilamento 200kDa (NF200)(75±14%, 81±7% ) , transient receptor potential vanilloid1 (TRPV1)(48±13%, 43±6%) e isolectina-B4-positivi (IB4) (56±6%;43±10%). I neuroni sensoriali, distribuiti da L2 a Ca1 (DRG), hanno presentato una localizzazione segmentale, mostrando maggior densità nei DRG L4-L5 e S2-S4. I neuroni sensoriali lombari sono risultati significativamente più grandi di quelle sacrali (1.112±624μm2 vs716±421μm2). Complessivamente, questi dati indicano che le vie lombari e sacrali probabilmente svolgono ruoli diversi nella trasmissione sensitiva del trigono della vescica urinaria. -I neuroni FB+ della STG e dei CMG sono risultati immunoreattivi per la tirosina idrossilasi (TH)(66±10,1%, 53±8,2%, rispettivamente), la dopamina beta-idrossilasi (DβH)(62±6,2%, 52±6,2%), neuropeptideY (NPY)(59±8%; 66±7%), CGRP(24±3%, 22±3%), SP(22±2%; 38±8%), polipeptide intestinale vasoattivo (VIP)(19±2%; 35±4%), nNOS(15±2%; 33±8%), trasportatore vescicolare dell'acetilcolina (VAChT)(15±2%; 35±5%), leu-encefalina (LENK)(14±7%; 26±9%), e somatostatina (SOM)(12±3%;32±7%).Il numero medio di neuroni FB+ (1845,1±259,3) era nella STG in L1-S3, con i pirenofori più piccoli (465,6±82.7μm2). Un gran numero (4287,5±1450,6) di neuroni FB+ di piccole dimensioni (476,1±103,9μm2) sono stati localizzati lungo il margine dei CMG. Il maggior numero (4793,3±1990,8) di neuroni FB + è stato osservato nel plesso pelvico, dove i neuroni marcati erano raggruppati in micro-gangli e con pirenoforo ancora più piccolo (374,9±85,4 μm2).
Resumo:
Aging is a physiological process characterized by a progressive decline of the “cellular homeostatic reserve”, refereed as the capability to respond suitably to exogenous and endogenous stressful stimuli. Due to their high energetic requests and post-mitotic nature, neurons are peculiarly susceptible to this phenomenon. However, the aged brain maintains a certain level of adaptive capacities and if properly stimulated may warrant a considerable functional recovery. Aim of the present research was to verify the plastic potentialities of the aging brain of rats subjected to two kind of exogenous stimuli: A) the replacement of the standard diet with a ketogenic regimen (the change forces the brain to use ketone bodies (KB) in alternative to glucose to satisfy the energetic needs) and B) a behavioural task able to induce the formation of inhibitory avoidance memory. A) Fifteen male Wistar rats of 19 months of age were divided into three groups (average body weight pair-matched), and fed for 8 weeks with different dietary regimens: i) diet containing 10% medium chain triglycerides (MCT); ii) diet containing 20% MCT; iii) standard commercial chow. Five young (5 months of age) and five old (26-27 months of age) animals fed with the standard diet were used as further controls. The following morphological parameters reflecting synaptic plasticity were evaluated in the stratum moleculare of the hippocampal CA1 region (SM CA1), in the outer molecular layer of the hippocampal dentate gyrus (OML DG), and in the granule cell layer of the cerebellar cortex (GCL-CCx): average area (S), numeric density (Nvs), and surface density (Sv) of synapses, and average volume (V), numeric density (Nvm), and volume density (Vv) of synaptic mitochondria. Moreover, succinic dehydrogenase (SDH) activity was cytochemically determined in Purkinje cells (PC) and V, Nvm, Vv, and cytochemical precipitate area/mitochondrial area (R) of SDH-positive mitochondria were evaluated. In SM CA1, MCT-KDs induced the early appearance of the morphological patterns typical of old animals: higher S and V, and lower Nvs and Nvm. On the contrary, in OML DG, Sv and Vv of MCT-KDs-fed rats were higher (as a result of higher Nvs and Nvm) vs. controls; these modifications are known to improve synaptic function and metabolic supply. The opposite effects of MCT-KDs might reflect the different susceptibility of these brain regions to the aging processes: OML DG is less vulnerable than SM CA1, and the reactivation of ketone bodies uptake and catabolism might occur more efficiently in this region, allowing the exploitation of their peculiar metabolic properties. In GCL-CCx, the results described a new scenario in comparison to that found in the hippocampal formation: 10%MCT-KD induced the early appearance of senescent patterns (decreased Nvs and Nvm; increased V), whereas 20%MCT-KD caused no changes. Since GCL-CCx is more vulnerable to age than DG, and less than CA1, these data further support the hypothesis that MCT-KDs effects in the aging brain critically depend on neuronal vulnerability to age, besides MCT percentage. Regarding PC, it was decided to evaluate only the metabolic effect of the dietetic regimen (20%MCT-KD) characterized by less side effects. KD counteracted age-related decrease in numeric density of SDH-positive mitochondria, and enhanced their energetic efficiency (R was significantly higher in MCT-KD-fed rats vs. all the controls). Since it is well known that Purkinje and dentate gyrus cells are less vulnerable to aging than CA1 neurons, these results corroborate our previous hypothesis. In conclusion, the A) experimental line provides the first evidence that morphological and functional parameters reflecting synaptic plasticity and mitochondrial metabolic competence may be modulated by MCT-KDs in the pre-senescent central nervous system, and that the effects may be heterogeneous in different brain regions. MCT-KDs seem to supply high energy metabolic intermediates and to be beneficial (“anti-aging”) for those neurons that maintain the capability to exploit them. This implies risks but also promising potentialities for the therapeutic use of these diets during aging B) Morphological parameters of synapses and synaptic mitochondria in SM CA1 were investigated in old (26-27 month-old) female Wistar rats following a single trial inhibitory avoidance task. In this memory protocol animals learn to avoid a dark compartment in which they received a mild, inescapable foot-shock. Rats were tested 3 and 6 or 9 hours after the training, divided into good and bad responders according to their performance (retention times above or below 100 s, respectively) and immediately sacrificed. Nvs, S, Sv, Nvm, V, and Vv were evaluated. In the good responder group, the numeric density of synapses and mitochondria was significantly higher and the average mitochondrial volume was significantly smaller 9 hours vs. 6 hours after the training. No significant differences were observed among bad responders. Thus, better performances in passive avoidance memory task are correlated with more efficient plastic remodeling of synaptic contacts and mitochondria in hippocampal CA1. These findings indicate that maintenance of synaptic plastic reactivity during aging is a critical requirement for preserving long-term memory consolidation.
Resumo:
Microglial involvement in neurological disorders is well-established, being microglial activation not only associated with neurotoxic consequences, but also with neuroprotective effects. The studies presented here, based on microglia rat primary cell cultures and mainly on microglial conditioned medium (MCM), show insights into the mechanism of Superoxide dismutase 1 (SOD1) and Apolipoprotein E (ApoE) secretion by microglia as well as their neuroprotective effect towards primary cerebellar granule neurons (CGNs) exposed to the dopaminergic toxin 6-hydroxydopamine (6-OHDA). SOD1 and ApoE are released respectively through non-classical lysosomal or the classical ER/Golgi-mediated secretion pathway. Microglial conditioned medium, in which SOD1 and ApoE accumulated, protected CGNs from degeneration and these effects were replicated when exogenous SOD1 or ApoE was added to a non-conditioned medium. SOD1 neuroprotective action was mediated by increased cell calcium from an external source. ApoE release is negatively affected by microglia activation, both with lipopolysaccharide (LPS) and Benzoylbenzoyl-ATP (Bz-ATP) but is stimulated by neuronal-conditioned medium as well as in microglia-neurons co-culture conditions. This neuronal-stimulated microglial ApoE release is differently regulated by activation states (i.e. LPS vs ATP) and by 6-hydroxydopamine-induced neurodegeneration. In co-culture conditions, microglial ApoE release is essential for neuroprotection, since microglial ApoE silencing through siRNA abrogated protection of cerebellar granule neurons against 6-OHDA toxicity. Therefore, these molecules could represent a target for manipulation aimed at promoting neuroprotection in brain diseases. Considering a pathological context, and the microglial ability to adopt a neuroprotective or neurotoxic profile, we characterize the microglial M1/M2 phenotype in transgenic rats (McGill-R-Thy1-APP) which reproduce extensively the Alzheimer’s-like amyloid pathology. Here, for the first time, cortical, hippocampal and cerebellar microglia of wild type and transgenic adult rats were compared, at both early and advanced stages of the pathology. In view of possible therapeutic translations, these findings are relevant to test microglial neuroprotection, in animal models of neurodegenerative diseases.