2 resultados para Random peptide libraries
em AMS Tesi di Dottorato - Alm@DL - Università di Bologna
Resumo:
Herpes simplex virus entry into cells requires a multipartite fusion apparatus made of gD, gB and heterodimer gH/gL. gD serves as receptor-binding glycoprotein and trigger of fusion; its ectodomain is organized in a N-terminal domain carrying the receptor-binding sites, and a C-terminal domain carrying the profusion domain, required for fusion but not receptor-binding. gB and gH/gL execute fusion. To understand how the four glycoproteins cross-talk to each other we searched for biochemical defined complexes in infected and transfected cells, and in virions. We report that gD formed complexes with gB in absence of gH/gL, and with gH/gL in absence of gB. Complexes with similar composition were formed in infected and transfected cells. They were also present in virions prior to entry, and did not increase at virus fusion with cell. A panel of gD mutants enabled the preliminary location of part of the binding site in gD to gB to the aa 240-260 portion and downstream, with T306P307 as critical residues, and of the binding site to gH/gL at aa 260-310 portion, with P291P292 as critical residues. The results indicate that gD carries composite independent binding sites for gB and gH/gL, both of which partly located in the profusion domain. The second part of the project dealt with rational design of peptides inhibiting virus entry has been performed. Considering gB and gD, the crystal structure is known, so we designed peptides that dock in the structure or prevent the adoption of the final conformation of target molecule. Considering the other glycoproteins, of which the structure is not known, peptide libraries were analyzed. Among several peptides, some were identified as active, designed on glycoprotein B. Two of them were further analyzed. We identified peptide residues fundamental for the inhibiting activity, suggesting a possible mechanism of action. Furthermore, changing the flexibility of peptides, an increased activity was observed,with an EC50 under 10μM. New approaches will try to demonstrate the direct interaction between these peptides and the target glycoprotein B.
Resumo:
In recent years the advances in genomics allowed to understand the importance of Transposable Elements (TE) in the evolution of eukaryotic genomes. In this thesis I face two aspects of the TE impact on the in the animal kingdom. The first part is a comparison of the dynamics of the TE dynamics in three species of stick-insects of the Genus Bacillus. I produced three random genomic libraries of 200 Kbps for the three parental species of the taxon: a gonochoric population of Bacillus rossius (facultative parthenogenetic), Bacillus grandii (gonochoric) and Bacillus atticus (obligate parthenogenetic). The unisexual taxon Bacillus atticus does not shows dramatic differences in TE total content and activity with respect to Bacillus grandii and Bacillus rossius. This datum does not confirm the trend observed in other animal models in which unisexual taxa tend to repress the activity of TE to escape the extinction by accumulation of harmful mutations. In the second part I tried to add a contribute to the debate initiated in recent years about the possibility that a high TE content is linked to a high rate of speciation. I designed an evolutionary framework to establish the different rate of speciation among two or more taxa, then I compared TE dynamics considering the different rates of speciation. The species dataset comprises: 29 mammals, four birds, two fish and two insects. On the whole the majority of comparisons confirms the expected trend. In particular the amount of species analyzed in Mammalia allowed me to get a statistical support (p<0,05) of the fact that the TE activity of recently mobilized elements is positively related with the rate of speciation.