2 resultados para Railway mail service

em AMS Tesi di Dottorato - Alm@DL - Università di Bologna


Relevância:

30.00% 30.00%

Publicador:

Resumo:

Since the birth of the European Union on 1957, the development of a single market through the integration of national freight transport networks has been one of the most important points in the European Union agenda. Increasingly congested motorways, rising oil prices and concerns about environment and climate change require the optimization of transport systems and transport processes. The best solution should be the intermodal transport, in which the most efficient transport options are used for the different legs of transport. This thesis examines the problem of defining innovative strategies and procedures for the sustainable development of intermodal freight transport in Europe. In particular, the role of maritime transport and railway transport in the intermodal chain are examined in depth, as these modes are recognized to be environmentally friendly and energy efficient. Maritime transport is the only mode that has kept pace with the fast growth in road transport, but it is necessary to promote the full exploitation of it by involving short sea shipping as an integrated service in the intermodal door-to-door supply chain and by improving port accessibility. The role of Motorways of the Sea services as part of the Trans-European Transport Network is is taken into account: a picture of the European policy and a state of the art of the Italian Motorways of the Sea system are reported. Afterwards, the focus shifts from line to node problems: the role of intermodal railway terminals in the transport chain is discussed. In particular, the last mile process is taken into account, as it is crucial in order to exploit the full capacity of an intermodal terminal. The difference between the present last mile planning models of Bologna Interporto and Verona Quadrante Europa is described and discussed. Finally, a new approach to railway intermodal terminal planning and management is introduced, by describing the case of "Terminal Gate" at Verona Quadrante Europa. Some proposals to favour the integrate management of "Terminal Gate" and the allocation of its capacity are drawn up.

Relevância:

30.00% 30.00%

Publicador:

Resumo:

The continuous and swift progression of both wireless and wired communication technologies in today's world owes its success to the foundational systems established earlier. These systems serve as the building blocks that enable the enhancement of services to cater to evolving requirements. Studying the vulnerabilities of previously designed systems and their current usage leads to the development of new communication technologies replacing the old ones such as GSM-R in the railway field. The current industrial research has a specific focus on finding an appropriate telecommunication solution for railway communications that will replace the GSM-R standard which will be switched off in the next years. Various standardization organizations are currently exploring and designing a radiofrequency technology based standard solution to serve railway communications in the form of FRMCS (Future Railway Mobile Communication System) to substitute the current GSM-R. Bearing on this topic, the primary strategic objective of the research is to assess the feasibility to leverage on the current public network technologies such as LTE to cater to mission and safety critical communication for low density lines. The research aims to identify the constraints, define a service level agreement with telecom operators, and establish the necessary implementations to make the system as reliable as possible over an open and public network, while considering safety and cybersecurity aspects. The LTE infrastructure would be utilized to transmit the vital data for the communication of a railway system and to gather and transmit all the field measurements to the control room for maintenance purposes. Given the significance of maintenance activities in the railway sector, the ongoing research includes the implementation of a machine learning algorithm to detect railway equipment faults, reducing time and human analysis errors due to the large volume of measurements from the field.