8 resultados para Radioisotopes in animal culture.
em AMS Tesi di Dottorato - Alm@DL - Università di Bologna
Resumo:
Advances in stem cell biology have challenged the notion that infarcted myocardium is irreparable. The pluripotent ability of stem cells to differentiate into specialized cell lines began to garner intense interest within cardiology when it was shown in animal models that intramyocardial injection of bone marrow stem cells (MSCs), or the mobilization of bone marrow stem cells with spontaneous homing to myocardium, could improve cardiac function and survival after induced myocardial infarction (MI) [1, 2]. Furthermore, the existence of stem cells in myocardium has been identified in animal heart [3, 4], and intense research is under way in an attempt to clarify their potential clinical application for patients with myocardial infarction. To date, in order to identify the best one, different kinds of stem cells have been studied; these have been derived from embryo or adult tissues (i.e. bone marrow, heart, peripheral blood etc.). Currently, three different biologic therapies for cardiovascular diseases are under investigation: cell therapy, gene therapy and the more recent “tissue-engineering” therapy . During my Ph.D. course, first I focalised my study on the isolation and characterization of Cardiac Stem Cells (CSCs) in wild-type and transgenic mice and for this purpose I attended, for more than one year, the Cardiovascular Research Institute of the New York Medical College, in Valhalla (NY, USA) under the direction of Doctor Piero Anversa. During this period I learnt different Immunohistochemical and Biomolecular techniques, useful for investigating the regenerative potential of stem cells. Then, during the next two years, I studied the new approach of cardiac regenerative medicine based on “tissue-engineering” in order to investigate a new strategy to regenerate the infracted myocardium. Tissue-engineering is a promising approach that makes possible the creation of new functional tissue to replace lost or failing tissue. This new discipline combines isolated functioning cells and biodegradable 3-dimensional (3D) polymeric scaffolds. The scaffold temporarily provides the biomechanical support for the cells until they produce their own extracellular matrix. Because tissue-engineering constructs contain living cells, they may have the potential for growth and cellular self-repair and remodeling. In the present study, I examined whether the tissue-engineering strategy within hyaluron-based scaffolds would result in the formation of alternative cardiac tissue that could replace the scar and improve cardiac function after MI in syngeneic heterotopic rat hearts. Rat hearts were explanted, subjected to left coronary descending artery occlusion, and then grafted into the abdomen (aorta-aorta anastomosis) of receiving syngeneic rat. After 2 weeks, a pouch of 3 mm2 was made in the thickness of the ventricular wall at the level of the post-infarction scar. The hyaluronic scaffold, previously engineered for 3 weeks with rat MSCs, was introduced into the pouch and the myocardial edges sutured with few stitches. Two weeks later we evaluated the cardiac function by M-Mode echocardiography and the myocardial morphology by microscope analysis. We chose bone marrow-derived mensenchymal stem cells (MSCs) because they have shown great signaling and regenerative properties when delivered to heart tissue following a myocardial infarction (MI). However, while the object of cell transplantation is to improve ventricular function, cardiac cell transplantation has had limited success because of poor graft viability and low cell retention, that’s why we decided to combine MSCs with a biopolimeric scaffold. At the end of the experiments we observed that the hyaluronan fibres had not been substantially degraded 2 weeks after heart-transplantation. Most MSCs had migrated to the surrounding infarcted area where they were especially found close to small-sized vessels. Scar tissue was moderated in the engrafted region and the thickness of the corresponding ventricular wall was comparable to that of the non-infarcted remote area. Also, the left ventricular shortening fraction, evaluated by M-Mode echocardiography, was found a little bit increased when compared to that measured just before construct transplantation. Therefore, this study suggests that post-infarction myocardial remodelling can be favourably affected by the grafting of MSCs delivered through a hyaluron-based scaffold
Resumo:
Since the publication of the book of Russell and Burch in 1959, scientific research has never stopped improving itself with regard to the important issue of animal experimentation. The European Directive 2010/63/EU “On the protection of animals used for scientific purposes” focuses mainly on the animal welfare, fixing the Russell and Burch’s 3Rs principles as the foundations of the document. In particular, the legislator clearly states the responsibility of the scientific community to improve the number of alternative methods to animal experimentation. The swine is considered a species of relevant interest for translational research and medicine due to its biological similarities with humans. The surgical community has, in fact, recognized the swine as an excellent model replicating the human cardiovascular system. There have been several wild-type and transgenic porcine models which were produced for biomedicine and translational research. Among these, the cardiovascular ones are the most represented. The continuous involvement of the porcine animal model in the biomedical research, as the continuous advances achieved using swine in translational medicine, support the need for alternative methods to animal experimentation involving pigs. The main purpose of the present work was to develop and characterize novel porcine alternative methods for cardiovascular translational biology/medicine. The work was mainly based on two different models: the first consisted in an ex vivo culture of porcine aortic cylinders and the second consisted in an in vitro culture of porcine aortic derived progenitor cells. Both the models were properly characterized and results indicated that they could be useful to the study of vascular biology. Nevertheless, both the models aim to reduce the use of experimental animals and to refine animal based-trials. In conclusion, the present research aims to be a small, but significant, contribution to the important and necessary field of study of alternative methods to animal experimentation.
Resumo:
Polyphenols, including flavonoids and stilbenes, are an essential part of human diet and constitute one of the most abundant and ubiquitous group of plant secondary metabolites. The level of these compounds is inducible by stress or fungal attack, so attempts are being made to identify likely biotic and abiotic elicitors and to better understand the underlying mechanism. Resveratrol (3,5,4’-trihydroxystilbene), which belongs to the stilbene family, is a naturally occurring polyphenol, found in several fruits, vegetables and beverages including red wine. It is one of the most important plant polyphenols with proved benefic activity on animal health. In the last two decades, the potential protective effects of resveratrol against cardiovascular and neurodegenerative diseases, as well as the chemopreventive properties against cancer, have been largely investigated. The most important source of polyphenols and in particular resveratrol for human diet is grape (Vitis vinifera). Since stilbenes and flavonoids play a very important role in plant defence responses and enviromental interactions, and their effects on human health seem promising, the aim of the research of this Thesis was to study at different levels the activation and the regulation of their biosynthetic pathways after chitosan treatment. Moreover, the polyphenol production in grape cells and the optimisation of cultural conditions bioreactor scale-up, were also investigated. Cell suspensions were obtained from cv. Barbera (Vitis vinifera L.) petioles and were treated with a biotic elicitor, chitosan (50 μg/mL, dissolved in acetic acid) to promote phenylpropanoid metabolism. Chitosan is a D-glucosamine polymer from fungi cell wall and therefore mimes fungal pathogen attack. Liquid cultures have been monitored for 15 days, measuring cell number, cell viability, pH and grams of fresh weight. The endogenous and released amounts of 7 stilbenes (trans and cis isomers of resveratrol, piceid and resveratroloside, and piceatannol), gallic acid, 6 hydroxycinnamic acids (trans-cinnamic, p-coumaric, caffeic, ferulic, sinapic and chlorogenic acids), 5 catechines (catechin, epicatechin, epigallocatechin-gallate (EGCG), epigallocatechin and epicatechin-gallate) and other 5 flavonoids (chalcon, naringenin, kaempferol, quercetin and rutin) in cells and cultural medium, were measured by HPLC-DAD analysis and total anthocyanins were quantified by spectrophotometric analysis. Chitosan was effective in stimulating trans-resveratrol endogenous accumulation with a sharp peak at day 4 (exceeding acetic acid and water controls by 36% and 63%, respectively), while it did not influence the production of the cis-isomer. Compared to both water and acetic acid controls, chitosan decreased the release of both trans- and cis-resveratrol respect to controls. No effect was shown on the accumulation of single resveratrol mono-glucoside isomers, but considering their total amount, normalized for the relative water control, it was possible to evidence an increase in both accumulation and release of those compounds, in chitosan-treated cells, throughout the culture period and particularly during the second week. Many of the analysed flavonoids and hydroxycinnamic acids were not present or detectable in trace amounts. Catechin, epicatechin and epigallocatechin-gallate (EGCG) were detectable both inside the cells and in the culture media, but chitosan did not affect their amounts. On the contrary, total anthocyanins have been stimulated by chitosan and their level, from day 4 to 14, was about 2-fold higher than in both controls, confirming macroscopic observations that treated suspensions showed an intense brown-red color, from day 3 onwards. These elicitation results suggest that chitosan selectively up-regulates specific biosynthetic pathways, without modifying the general accumulation pattern of other flavonoids. Proteins have been extracted from cells at day 4 of culture (corresponding to the production peak of trans-resveratrol) and separated by bidimensional electrophoresis. The 73 proteins that showed a consistently changed amount between untreated, chitosan and acetic acid (chitosan solvent) treated cells, have been identified by mass spectrometry. Chitosan induced an increase in stilbene synthase (STS, the resveratrol biosynthetic enzyme), chalcone-flavanone isomerase (CHI, that switches the pathway from chalcones to flavones and anthocyanins), pathogenesis-related proteins 10 (PRs10, a large family of defence proteins), and a decrease in many proteins belonging to primary metabolisms. A train of six distinct spots of STS encoded by the same gene and increased by chitosan, was detected on the 2-D gels, and related to the different phosphorylation degree of STS spots. Northern blot analyses have been performed on RNA extracted from cells treated with chitosan and relative controls, using probes for STS, PAL (phenylalanine ammonia lyase, the first enzyme of the biosynthetic pathway), CHS (chalcone synthase, that shares with STS the same precursors), CHI and PR-10. The up-regulation of PAL, CHS and CHI transcript expression levels correlated with the accumulation of anthocyanins. The strong increase of different molecular weight PR-10 mRNAs, correlated with the 11 PR-10 protein spots identified in proteomic analyses. The sudden decrease in trans-resveratrol endogenous accumulation after day 4 of culture, could be simply explained by the diminished resveratrol biosynthetic activity due to the lower amount of biosynthetic enzymes. This might be indirectly demonstrated by northern blot expression analyses, that showed lower levels of phenylalanine ammonia lyase (PAL) and stilbene synthase (STS) mRNAs starting from day 4. Other possible explanations could be a resveratrol oxidation process and/or the formation of other different mono-, di-glucosides and resveratrol oligomers such as viniferins. Immunolocalisation experiments performed on grape protoplasts and the subsequent analyses by confocal microscope, showed that STS, and therefore the resveratrol synthetic site, is mostly associated to intracellular membranes close to the cytosolic side of plasma membrane and in a smaller amount is localized in the cytosol. STS seemed not to be present inside vacuole and nucleus. There were no differences in the STS intracellular localisation between the different treatments. Since it was shown that stilbenes are largely released in the culture medium and that STS is a soluble protein, a possible interaction of STS with a plasma membrane transporter responsible for the extrusion of stilbenes in the culture medium, might be hypothesized. Proteomic analyses performed on subcellular fractions identified in the microsomial fraction 5 proteins taking part in channel complexes or associated with channels, that significantly changed their amount after chitosan treatment. In soluble and membrane fractions respectively 3 and 4 STS and 6 and 3 PR-10 have been identified. Proteomic results obtained from subcellular fractions substantially confirmed previous result obtained from total cell protein extracts and added more information about protein localisation and co-localisation. The interesting results obtained on Barbera cell cultures with the aim to increase polyphenol (especially stilbenes) production, have encouraged scale up tests in 1 litre bioreactors. The first trial fermentation was performed in parallel with a normal time-course in 20 mL flasks, showing that the scale-up (bigger volume and different conditions) process influenced in a very relevant way stilbenes production. In order to optimise culture parameters such as medium sucrose amount, fermentation length and inoculum cell concentration, few other fermentations were performed. Chitosan treatments were also performed. The modification of each parameter brought relevant variations in stilbenes and catechins levels, so that the production of a certain compound (or class of compounds) could be hypothetically promoted by modulating one or more culture parameters. For example the catechin yield could be improved by increasing sucrose content and the time of fermentation. The best results in stilbene yield were obtained in a 800 mL fermentation inoculated with 10.8 grams of cells and supplemented with chitosan. The culture was fed with MS medium added with 30 g/L sucrose, 25 μg/mL rifampicin and 50 μg/mL of chitosan, and was maintained at 24°C, stirred by marine impeller at 100 rpm and supplied of air at 0.16 L/min rate. Resveratroloside was the stilbene present in the larger amount, 3-5 times more than resveratrol. Because resveratrol glucosides are similarly active and more stable than free resveratrol, their production using a bioreactor could be a great advantage in an hypothetical industrial process. In my bioreactor tests, stilbenes were mainly released in the culture medium (60-80% of the total) and this fact could be another advantage for industrial applications, because it allows recovering the products directly from the culture medium without stopping the fermentation and/or killing the cells. In my best cultural conditions, it was possible to obtain 3.95 mg/L of stilbenes at day 4 (maximum resveratrol accumulation) and 5.13 mg/L at day 14 (maximum resveratroloside production). In conclusion, chitosan effect in inducing Vitis vinifera defense mechanisms can be related to its ability to increase the intracellular content of a large spectrum of antioxidants, and in particular of resveratrol, its derivates and anthocyanins. Its effect can be observed at transcriptional, proteomic (variation of soluble and membrane protein amounts) and metabolic (polyphenols production) level. The chitosan ability to elicit specific plant matabolisms can be useful to produce large quantities of antioxidant compounds from cell culture in bioreactor.
Resumo:
The present study aims at analyzing how dark humour as a cinematic genre travels cross-culturally through a specific mode of audiovisual translation, i.e. dubbing. In particular, it takes into consideration the processes involved in dubbing humour from English into Italian as observed in the English- and Italian-language versions of ten British and American dark comedies from the 1940s to the 2000s. In an attempt to identify some of the main mechanisms of the dark humour genre, the humorous content of the films was analyzed in terms of the elements on which specific scenes are based, mainly the non-verbal and verbal components. In the cases in which verbal elements were involved, i.e. the examples of verbally expressed humour, the analysis was concerned with whether they were adapted into Italian and to what effect. Quantification of the different kinds of dark humour revealed that in the sample of dark comedies verbal dark humour had a higher frequency (85.3%) than non-verbal dark humour (14.7%), which partially disconfirmed the first part of the research hypothesis. However, the significance of contextual elements in the conveying of dark humour, both in the form of Nsp VEH (54.31%) and V-V (V+VE) (21.68%), provided support for the hypothesis that, even when expressed verbally, dark humour is more closely linked to context-based rather than purely linguistic humour (4.9%). The second part of the analysis was concerned with an investigation of the strategies adopted for the translation of verbal dark humour elements from the SL (English) into the TL (Italian) through the filter of dubbing. Four translational strategies were identified as far as the rendering of verbal dark humour is concerned: i) complete omission; ii) weakening; iii) close rendering; and iv) increased effect. Complete omission was found to be the most common among these strategies, with 80.9% of dark humour examples being transposed in a way that kept the ST’s function substantially intact. Weakening of darkly humorous lines was applied in 12% of cases, whereas increased effect accounted for 4.6% and complete omission for 2.5%. The fact that for most examples of Nsp VEH (84.9%) and V-AC (V+VE) (91.4%) a close rendering effect was observed and that 12 out of 21 examples of V-AC (PL) (a combined 57%) were either omitted or weakened seemed to confirm, on the one hand, the complexity of the translation process required by cases of V-AC (PL) and V-AC (CS). On the other hand, as suggested in the second part of the research hypothesis, the data might be interpreted as indicating that lesser effort on the translator/adaptor’s part is involved in the adaptation of V-AC (Nsp VEH) and V-V (V+VE). The issue of the possible censorial intervention undergone by examples of verbal dark humour in the sample still remains unclear.
Resumo:
Background. Mesenchymal stem cells (MSC) may be of value in regeneration of renal tissue after damage, however lack of biological knowledge and variability of results in animal models limit their utilization. Methods. We studied the effects of MSC on podocytes ‘in vitro’ and ‘in vivo’ utilizing adriamycin (ADR) as a model of renal toxicity. The ‘in vivo’ experimental approach was carried out in male Sprague Dawley rats (overall 60 animals) treated with different ADR schemes to induce acute and chronic nephrosis. MSC were given a) concomitantly to ADR in tail vein or b) in aorta and c) in tail vein 60 days after ADR. Homing was assessed with PKH26-MSC. Results. MSC rescued podocytes from apoptosis induced by ADR ‘in vitro’. The maximal effect (80% rescue) was obtained with MSC/Podocytes co-culture ratio of 1:1 for 72 hours. All rats treated with ADR developed nephrosis. In no case MSC modified the clinical parameters (i.e. proteinuria, serum creatinine, lipids) but protected the kidney from severe glomerulosclerosis when given concomitantly to ADR. Rats given MSC 60 days after ADR developed the same severe renal damage. Only few MSC were found in renal tubule-interstitial areas after 1-24 hours from injection and no MSC was detected in glomeruli. Conclusions. MSC reduced apoptosis of podocytes treated with ADR ‘in vitro’. Early and repeated MSC infusion blunted glomerular damage in chronic ADR nephropathy. MSC did not modify proteinuria and progression to renal failure, that implies lack of regenerative potential in this model.
Resumo:
Microglial involvement in neurological disorders is well-established, being microglial activation not only associated with neurotoxic consequences, but also with neuroprotective effects. The studies presented here, based on microglia rat primary cell cultures and mainly on microglial conditioned medium (MCM), show insights into the mechanism of Superoxide dismutase 1 (SOD1) and Apolipoprotein E (ApoE) secretion by microglia as well as their neuroprotective effect towards primary cerebellar granule neurons (CGNs) exposed to the dopaminergic toxin 6-hydroxydopamine (6-OHDA). SOD1 and ApoE are released respectively through non-classical lysosomal or the classical ER/Golgi-mediated secretion pathway. Microglial conditioned medium, in which SOD1 and ApoE accumulated, protected CGNs from degeneration and these effects were replicated when exogenous SOD1 or ApoE was added to a non-conditioned medium. SOD1 neuroprotective action was mediated by increased cell calcium from an external source. ApoE release is negatively affected by microglia activation, both with lipopolysaccharide (LPS) and Benzoylbenzoyl-ATP (Bz-ATP) but is stimulated by neuronal-conditioned medium as well as in microglia-neurons co-culture conditions. This neuronal-stimulated microglial ApoE release is differently regulated by activation states (i.e. LPS vs ATP) and by 6-hydroxydopamine-induced neurodegeneration. In co-culture conditions, microglial ApoE release is essential for neuroprotection, since microglial ApoE silencing through siRNA abrogated protection of cerebellar granule neurons against 6-OHDA toxicity. Therefore, these molecules could represent a target for manipulation aimed at promoting neuroprotection in brain diseases. Considering a pathological context, and the microglial ability to adopt a neuroprotective or neurotoxic profile, we characterize the microglial M1/M2 phenotype in transgenic rats (McGill-R-Thy1-APP) which reproduce extensively the Alzheimer’s-like amyloid pathology. Here, for the first time, cortical, hippocampal and cerebellar microglia of wild type and transgenic adult rats were compared, at both early and advanced stages of the pathology. In view of possible therapeutic translations, these findings are relevant to test microglial neuroprotection, in animal models of neurodegenerative diseases.
Resumo:
Ex-situ conservation and the in-situ conservation of natural habitats are the tools to conserve biodiversity. Habitats and ecosystems have been becoming altered by human activities and a growing number of species requires form of management to ensure their survival. Conservation queries become more complex and urgent. Developing scientifically based and innovative approaches to ex-situ conservation is necessary. Recent studies underline importance of gut microbiome in animal health with implications for animal conservation and management. Animal and human studies have demonstrated that environmental factors can impact gut microbiome composition. Within this scenario, the present work focused on species belonging to different taxa, reptiles and mammals: Aldabrachelys gigantea, the giant tortoise of the Seychelles islands and Indri indri, the greatest leaving lemur of Madagascar. The Seychelles giant tortoise is vulnerable species with declining population, whereas the indri is a critically endangered species that could reach the extinction within 25 years. Both need research to help them to survive. Tortoises live for very long time and to observe how they can afford the environmental changes is very difficult. Indris, instead, are able to survive only in a small area of the Madagascar forest, with a very strong link between the species’ survival and the environment. The obtained results underline importance of environmental factors, both in-situ and ex-situ, for species conservation. Microbiome could help the organisms to respond on a short timescale and cope with, environmental changes. However, species with long generation time might not be able to adapt to fast changes but bacteria with a short generation time can adapt on a shorter timescale allowing the host to cope with fluctuating environment. Gut microbiome plays an important role in an animal’s health and has the potential to improve the management of individuals under human care for conservation purposes.
Resumo:
My PhD research period was focused on the anatomical, physiological and functional study of the gastrointestinal system on two different animal models. In two different contexts, the purpose of these two lines of research was contribute to understand how a specific genetic mutation or the adoption of a particular dietary supplement can affect gastrointestinal function. Functional gastrointestinal disorders are chronic conditions characterized by symptoms for which no organic cause can be found. Although symptoms are generally mild, a small subset of cases shows severe manifestations. This subset of patients may also have recurrent intestinal sub-occlusive episodes, but in absence of mechanical causes. This condition is referred to as chronic intestinal pseudo-obstruction, a rare, intractable chronic disease. Some mutations have been associated with CIPO. A novel causative RAD21 missense mutation was identified in a large consanguineous family, segregating a recessive form of CIPO. The present thesis was aimed to elucidate the mechanisms leading to neuropathy underlying CIPO via a recently developed conditional KI mouse carrying the RAD21 mutation. The experimental studies are based on the characterization and functional analysis of the conditional KI Rad21A626T mouse model. On the other hand aquaculture is increasing the global supply of foods. The species selected and feeds used affects the nutrients available from aquaculture, with a need to improve feed efficiency, both for economic and environmental reasons, but this will require novel innovative approaches. Nutritional strategies focused on the use of botanicals have attracted interest in animal production. Previous research indicates the positive results of using essential oils (EOs) as natural feed additives for several farmed animals. Therefore, the present study was designed to compare the effects of feed EO supplementation in two different forms (natural and composed of active ingredients obtained by synthesis) on the gastric mucosa in European sea bass.