2 resultados para Radiation Sensitivity

em AMS Tesi di Dottorato - Alm@DL - Università di Bologna


Relevância:

30.00% 30.00%

Publicador:

Resumo:

21 cm cosmology opens an observational window to previously unexplored cosmological epochs such as the Epoch of Reionization (EoR), the Cosmic Dawn and the Dark Ages using powerful radio interferometers such as the planned Square Kilometer Array (SKA). Among all the other applications which can potentially improve the understanding of standard cosmology, we study the promising opportunity given by measuring the weak gravitational lensing sourced by 21 cm radiation. We performed this study in two different cosmological epochs, at a typical EoR redshift and successively at a post-EoR redshift. We will show how the lensing signal can be reconstructed using a three dimensional optimal quadratic lensing estimator in Fourier space, using single frequency band or combining multiple frequency band measurements. To this purpose, we implemented a simulation pipeline capable of dealing with issues that can not be treated analytically. Considering the current SKA plans, we studied the performance of the quadratic estimator at typical EoR redshifts, for different survey strategies and comparing two thermal noise models for the SKA-Low array. The simulation we performed takes into account the beam of the telescope and the discreteness of visibility measurements. We found that an SKA-Low interferometer should obtain high-fidelity images of the underlying mass distribution in its phase 1 only if several bands are stacked together, covering a redshift range that goes from z=7 to z=11.5. The SKA-Low phase 2, modeled in order to improve the sensitivity of the instrument by almost an order of magnitude, should be capable of providing images with good quality even when the signal is detected within a single frequency band. Considering also the serious effect that foregrounds could have on this detections, we discussed the limits of these results and also the possibility provided by these models of measuring an accurate lensing power spectrum.

Relevância:

30.00% 30.00%

Publicador:

Resumo:

Ionizing radiations are important tools employed every day in the modern society. For example, in medicine they are routinely used for diagnostic and therapy. The large variety of applications leads to the need of novel, more efficient, low-cost ionizing radiation detectors with new functionalities. Personal dosimetry would benefit from wearable detectors able to conform to the body surfaces. Traditional semiconductors used for ionizing radiation direct detectors offer high performance but they are intrinsically stiff, brittle and require high voltages to operate. Hybrid lead-halide perovskites emerged recently as a novel class of materials for ionizing radiation detection. They combine high absorption coefficient, solution processability and high charge transport capability, enabling efficient and low-cost detection. The deposition from solution allows the fabrication of thin-film flexible devices. In this thesis, I studied the detection properties of different types of hybrid perovskites, deposited from solution in thin-film form, and tested under X-rays, gamma-rays and protons beams. I developed the first ultraflexible X-ray detector with exceptional conformability. The effect of coupling organic layers with perovskites was studied at the nanoscale giving a direct demonstration of trap passivation effect at the grain boundaries. Different perovskite formulations were deposited and tested to improve the film stability. I report about the longest aging studies on perovskite X-ray detectors showing that the addition of starch in the precursors’ solution can improve the stability in time with only a 7% decrease in sensitivity after 630 days of storage in ambient conditions. 2D perovskites were also explored as direct detector for X-rays and gamma-rays. Detection of 511 keV photons by a thin-film device is here demonstrated and was validated for monitoring a radiotracer injection. At last, a new approach has been used: a 2D/3Dmixed perovskite thin-film demonstrated to reliably detect 5 MeV protons, envisioning wearable dose monitoring during proton/hadron therapy treatments.