3 resultados para RESERVOIR WATER

em AMS Tesi di Dottorato - Alm@DL - Università di Bologna


Relevância:

40.00% 40.00%

Publicador:

Resumo:

Since the study of Large Dam Reservoirs is of worldwide interest, in this PhD project we investigated the Ridracoli reservoir, one of the main water supply in Emilia-Romagna (north-eastern Italy). This work aims to characterize waters and sediments to better understand their composition, interactions and any process that occurs, for a better geochemical and environmental knowledge of the area. Physical and chemical analyses on the water column have shown an alternation of stratification and mixing of water in the reservoir’s water body due to seasonal variations in temperature and density. In particular, it was observed the establishment, in late summer, of anoxic conditions at the bottom, which in turn affects the concentration and mobility of some elements of concern (e.g. Fe and Mn) for the water quality. Sediments within the reservoir and from surrounding areas were analysed for organic matter, total inorganic composition and grain size, assessing the inter-element relationship, grain size, geological background and damming influences on their chemistry, through descriptive statistics, Principal Component Analysis and Cluster Analysis. The reservoir’s area was also investigated by pseudo total composition (Aqua Regia digestion), degree of elements extractability, and enrichment factors, then analysed and compared to limits by law and literature. Sediment cores, interstitial waters, and benthic chamber data from the bottom were of great interest due to organic matter degradation, early diagenesis, mineral formation at water-sediment interface and observed flows. Finally, leaching test and extraction procedures, of environmental interest, showed peculiar partitioning, both regarding spatial and in-depth distribution, and the absence of pollution. Collectively, our results are useful for the comprehension of processes that occur in water and sediments of Ridracoli reservoir, providing important knowledges on the site that could be relevant for the management of the resource and the planning of future interventions.

Relevância:

30.00% 30.00%

Publicador:

Resumo:

The majority of carbonate reservoir is oil-wet, which is an unfavorable condition for oil production. Generally, the total oil recovery after both primary and secondary recovery in an oil-wet reservoir is low. The amount of producible oil by enhanced oil recovery techniques is still large. Alkali substances are proven to be able to reverse rock wettability from oil-wet to water-wet, which is a favorable condition for oil production. However, the wettability reversal mechanism would require a noneconomical aging period to reach the maximum reversal condition. An intermittent flow with the optimum pausing period is then combined with alkali flooding (combination technique) to increase the wettability reversal mechanism and as a consequence, oil recovery is improved. The aims of this study are to evaluate the efficiency of the combination technique and to study the parameters that affect this method. In order to implement alkali flooding, reservoir rock and fluid properties were gathered, e.g. interfacial tension of fluids, rock wettability, etc. The flooding efficiency curves are obtained from core flooding and used as a major criterion for evaluation the performance of technique. The combination technique improves oil recovery when the alkali concentration is lower than 1% wt. (where the wettability reversal mechanism is dominant). The soap plug (that appears when high alkali concentration is used) is absent in this combination as seen from no drop of production rate. Moreover, the use of low alkali concentration limits alkali loss. This combination probably improves oil recovery also in the fractured carbonate reservoirs in which oil is uneconomically produced. The results from the current study indicate that the combination technique is an option that can improve the production of carbonate reservoirs. And a less quantity of alkali is consumed in the process.

Relevância:

30.00% 30.00%

Publicador:

Resumo:

Massive proliferations of cyanobacteria in freshwaters have recently increased, causing ecological and economic losses. Their ever-increasing presence in water sources destined to potabilization has become a major threat for public health, since several species can produce harmful toxins (cyanotoxin). Therefore, additional specific measures to improve management and treatment of drinking water(s) are required. The PhD thesis investigates toxic cyanobacteria in drinking waters with a special focus on Emilia-Romagna (Italy), throughout three separated chapters, each with different specific objectives. The first chapter aims at improving the fast monitoring of cyanobacteria in drinking water, which was investigated by testing different models of multi-wavelength spectrofluorometers. Inter-laboratories calibrations were conducted using mono-specific cultures and field samples, and both the feasibility and the technical limitations of such tools were illustrated. The second chapter evaluates the effectiveness of drinking water treatments in removing cyanobacterial cells and toxins. Two chlorinated oxidants (sodium hypochlorite and chlorine dioxide) already in use for pre-oxidation during water potabilization, were tested on cultures of the toxic cyanobacterium Microcystis aeruginosa posing a specific focus on toxin removal and revealing that pre-oxidation can cause the release of toxins and unknown metabolites. Innovative treatments based on non-thermal plasma were also tested, observing an effective and rapid inactivation of cyanobacterial cells. The third chapter presents a study on a cyanobacterium isolated from a drinking water reservoir of Emilia-Romagna and investigated by combining biological, chemical, and genomic methods. Although the strain did not produce any known cyanotoxin, high toxicity of water-extract was observed in bioassays and potential implications for drinking water were discussed. Overall, the PhD thesis offers new insights into toxic cyanobacteria management in drinking water, highlighting best practices for drinking water managers regarding their detection and removal. Additionally, the thesis provides new contributions to the understanding of the freshwater cyanobacteria community in the Emilia-Romagna region.