6 resultados para RESEARCH SCIENTIFIC
em AMS Tesi di Dottorato - Alm@DL - Università di Bologna
Resumo:
Although the debate of what data science is has a long history and has not reached a complete consensus yet, Data Science can be summarized as the process of learning from data. Guided by the above vision, this thesis presents two independent data science projects developed in the scope of multidisciplinary applied research. The first part analyzes fluorescence microscopy images typically produced in life science experiments, where the objective is to count how many marked neuronal cells are present in each image. Aiming to automate the task for supporting research in the area, we propose a neural network architecture tuned specifically for this use case, cell ResUnet (c-ResUnet), and discuss the impact of alternative training strategies in overcoming particular challenges of our data. The approach provides good results in terms of both detection and counting, showing performance comparable to the interpretation of human operators. As a meaningful addition, we release the pre-trained model and the Fluorescent Neuronal Cells dataset collecting pixel-level annotations of where neuronal cells are located. In this way, we hope to help future research in the area and foster innovative methodologies for tackling similar problems. The second part deals with the problem of distributed data management in the context of LHC experiments, with a focus on supporting ATLAS operations concerning data transfer failures. In particular, we analyze error messages produced by failed transfers and propose a Machine Learning pipeline that leverages the word2vec language model and K-means clustering. This provides groups of similar errors that are presented to human operators as suggestions of potential issues to investigate. The approach is demonstrated on one full day of data, showing promising ability in understanding the message content and providing meaningful groupings, in line with previously reported incidents by human operators.
Resumo:
Here I will focus on three main topics that best address and include the projects I have been working in during my three year PhD period that I have spent in different research laboratories addressing both computationally and practically important problems all related to modern molecular genomics. The first topic is the use of livestock species (pigs) as a model of obesity, a complex human dysfunction. My efforts here concern the detection and annotation of Single Nucleotide Polymorphisms. I developed a pipeline for mining human and porcine sequences. Starting from a set of human genes related with obesity the platform returns a list of annotated porcine SNPs extracted from a new set of potential obesity-genes. 565 of these SNPs were analyzed on an Illumina chip to test the involvement in obesity on a population composed by more than 500 pigs. Results will be discussed. All the computational analysis and experiments were done in collaboration with the Biocomputing group and Dr.Luca Fontanesi, respectively, under the direction of prof. Rita Casadio at the Bologna University, Italy. The second topic concerns developing a methodology, based on Factor Analysis, to simultaneously mine information from different levels of biological organization. With specific test cases we develop models of the complexity of the mRNA-miRNA molecular interaction in brain tumors measured indirectly by microarray and quantitative PCR. This work was done under the supervision of Prof. Christine Nardini, at the “CAS-MPG Partner Institute for Computational Biology” of Shangai, China (co-founded by the Max Planck Society and the Chinese Academy of Sciences jointly) The third topic concerns the development of a new method to overcome the variety of PCR technologies routinely adopted to characterize unknown flanking DNA regions of a viral integration locus of the human genome after clinical gene therapy. This new method is entirely based on next generation sequencing and it reduces the time required to detect insertion sites, decreasing the complexity of the procedure. This work was done in collaboration with the group of Dr. Manfred Schmidt at the Nationales Centrum für Tumorerkrankungen (Heidelberg, Germany) supervised by Dr. Annette Deichmann and Dr. Ali Nowrouzi. Furthermore I add as an Appendix the description of a R package for gene network reconstruction that I helped to develop for scientific usage (http://www.bioconductor.org/help/bioc-views/release/bioc/html/BUS.html).
Resumo:
Purpose. Despite work-related stress is one of the most studied topic in organizational psychology, many aspects as for example the use of different measures (e.g. subjective and objective, qualitative and quantitative) are still under debate. According to this, in order to enhance knowledge concerning which factors and processes contribute to create healthy workplaces, this thesis is composed by four different studies aiming to understand: a) the role of relevant antecedents (e.g. leadership, job demands, work-family conflict, social support etc.) and outcomes (e.g. workplace phobia, absenteeism etc.) of work-related stress; and b) how to manage psychosocial risk factors in the workplace. The studies. The first study focused on how disagreement between supervisors and their employees on leadership style (transformational and transactional) could affect workers well-being and work team variables. The second and third study used both subjective and objective data in order to increase the quality of the reliability of the results gained. Particularly, the second study focused on job demand and its relationship with objective sickness leave. Findings showed that despite there is no direct relationship between these two variables, job demand affects work-family conflict, which in turn affect exhaustion, which leads to absenteeism. The third study analysed the role of a new concept never studied before in organizational settings (workplace phobia), as a health outcome in the JD-R model, demonstrating also its relationship with absenteeism. The last study highlighted the added value of using the mixed methods research approach in order to detect and analyse context-specific job demands which could affects workers’ health. Conclusion. The findings of this thesis answered both to open questions in the scientific literature and to the social request of managing psychosocial risk factors in the workplace in order to enhance workers well-being.
Resumo:
This dissertation proposes an analysis of the governance of the European scientific research, focusing on the emergence of the Open Science paradigm: a new way of doing science, oriented towards the openness of every phase of the scientific research process, able to take full advantage of the digital ICTs. The emergence of this paradigm is relatively recent, but in the last years it has become increasingly relevant. The European institutions expressed a clear intention to embrace the Open Science paradigm (eg., think about the European Open Science Cloud, EOSC; or the establishment of the Horizon Europe programme). This dissertation provides a conceptual framework for the multiple interventions of the European institutions in the field of Open Science, addressing the major legal challenges of its implementation. The study investigates the notion of Open Science, proposing a definition that takes into account all its dimensions related to the human and fundamental rights framework in which Open Science is grounded. The inquiry addresses the legal challenges related to the openness of research data, in light of the European Open Data framework and the impact of the GDPR on the context of Open Science. The last part of the study is devoted to the infrastructural dimension of the Open Science paradigm, exploring the e-infrastructures. The focus is on a specific type of computational infrastructure: the High Performance Computing (HPC) facility. The adoption of HPC for research is analysed from the European perspective, investigating the EuroHPC project, and the local perspective, proposing the case study of the HPC facility of the University of Luxembourg, the ULHPC. This dissertation intends to underline the relevance of the legal coordination approach, between all actors and phases of the process, in order to develop and implement the Open Science paradigm, adhering to the underlying human and fundamental rights.
Resumo:
The dissertation addresses the still not solved challenges concerned with the source-based digital 3D reconstruction, visualisation and documentation in the domain of archaeology, art and architecture history. The emerging BIM methodology and the exchange data format IFC are changing the way of collaboration, visualisation and documentation in the planning, construction and facility management process. The introduction and development of the Semantic Web (Web 3.0), spreading the idea of structured, formalised and linked data, offers semantically enriched human- and machine-readable data. In contrast to civil engineering and cultural heritage, academic object-oriented disciplines, like archaeology, art and architecture history, are acting as outside spectators. Since the 1990s, it has been argued that a 3D model is not likely to be considered a scientific reconstruction unless it is grounded on accurate documentation and visualisation. However, these standards are still missing and the validation of the outcomes is not fulfilled. Meanwhile, the digital research data remain ephemeral and continue to fill the growing digital cemeteries. This study focuses, therefore, on the evaluation of the source-based digital 3D reconstructions and, especially, on uncertainty assessment in the case of hypothetical reconstructions of destroyed or never built artefacts according to scientific principles, making the models shareable and reusable by a potentially wide audience. The work initially focuses on terminology and on the definition of a workflow especially related to the classification and visualisation of uncertainty. The workflow is then applied to specific cases of 3D models uploaded to the DFG repository of the AI Mainz. In this way, the available methods of documenting, visualising and communicating uncertainty are analysed. In the end, this process will lead to a validation or a correction of the workflow and the initial assumptions, but also (dealing with different hypotheses) to a better definition of the levels of uncertainty.
Resumo:
The rapid progression of biomedical research coupled with the explosion of scientific literature has generated an exigent need for efficient and reliable systems of knowledge extraction. This dissertation contends with this challenge through a concentrated investigation of digital health, Artificial Intelligence, and specifically Machine Learning and Natural Language Processing's (NLP) potential to expedite systematic literature reviews and refine the knowledge extraction process. The surge of COVID-19 complicated the efforts of scientists, policymakers, and medical professionals in identifying pertinent articles and assessing their scientific validity. This thesis presents a substantial solution in the form of the COKE Project, an initiative that interlaces machine reading with the rigorous protocols of Evidence-Based Medicine to streamline knowledge extraction. In the framework of the COKE (“COVID-19 Knowledge Extraction framework for next-generation discovery science”) Project, this thesis aims to underscore the capacity of machine reading to create knowledge graphs from scientific texts. The project is remarkable for its innovative use of NLP techniques such as a BERT + bi-LSTM language model. This combination is employed to detect and categorize elements within medical abstracts, thereby enhancing the systematic literature review process. The COKE project's outcomes show that NLP, when used in a judiciously structured manner, can significantly reduce the time and effort required to produce medical guidelines. These findings are particularly salient during times of medical emergency, like the COVID-19 pandemic, when quick and accurate research results are critical.