7 resultados para RANDOM-CLUSTER MODEL

em AMS Tesi di Dottorato - Alm@DL - Università di Bologna


Relevância:

80.00% 80.00%

Publicador:

Resumo:

La catena respiratoria mitocondriale è principalmente costituita da proteine integrali della membrana interna, che hanno la capacità di accoppiare il flusso elettronico, dovuto alle reazioni redox che esse catalizzano, al trasporto di protoni dalla matrice del mitocondrio verso lo spazio intermembrana. Qui i protoni accumulati creano un gradiente elettrochimico utile per la sintesi di ATP ad opera dell’ATP sintasi. Nonostante i notevoli sviluppi della ricerca sulla struttura e sul meccanismo d’azione dei singoli enzimi della catena, la sua organizzazione sovramolecolare, e le implicazioni funzionali che ne derivano, rimangono ancora da chiarire in maniera completa. Da questa problematica trae scopo la presente tesi volta allo studio dell’organizzazione strutturale sovramolecolare della catena respiratoria mediante indagini sia cinetiche che strutturali. Il modello di catena respiratoria più accreditato fino a qualche anno fa si basava sulla teoria delle collisioni casuali (random collision model) che considera i complessi come unità disperse nel doppio strato lipidico, ma collegate funzionalmente tra loro da componenti a basso peso molecolare (Coenzima Q10 e citocromo c). Recenti studi favoriscono invece una organizzazione almeno in parte in stato solido, in cui gli enzimi respiratori si presentano sotto forma di supercomplessi (respirosoma) con indirizzamento diretto (channeling) degli elettroni tra tutti i costituenti, senza distinzione tra fissi e mobili. L’importanza della comprensione delle relazioni che si instaurano tra i complessi , deriva dal fatto che la catena respiratoria gioca un ruolo fondamentale nell’invecchiamento, e nello sviluppo di alcune malattie cronico degenerative attraverso la genesi di specie reattive dell’ossigeno (ROS). E’ noto, infatti, che i ROS aggrediscono, anche i complessi respiratori e che questi, danneggiati, producono più ROS per cui si instaura un circolo vizioso difficile da interrompere. La nostra ipotesi è che, oltre al danno a carico dei singoli complessi, esista una correlazione tra le modificazioni della struttura del supercomplesso, stress ossidativo e deficit energetico. Infatti, la dissociazione del supercomplesso può influenzare la stabilità del Complesso I ed avere ripercussioni sul trasferimento elettronico e protonico; per cui non si può escludere che ciò porti ad un’ulteriore produzione di specie reattive dell’ossigeno. I dati sperimentali prodotti a sostegno del modello del respirosoma si riferiscono principalmente a studi strutturali di elettroforesi su gel di poliacrilammide in condizioni non denaturanti (BN-PAGE) che, però, non danno alcuna informazione sulla funzionalità dei supercomplessi. Pertanto nel nostro laboratorio, abbiamo sviluppato una indagine di tipo cinetico, basata sull’analisi del controllo di flusso metabolico,in grado di distinguere, funzionalmente, tra supercomplessi e complessi respiratori separati. Ciò è possibile in quanto, secondo la teoria del controllo di flusso, in un percorso metabolico lineare composto da una serie di enzimi distinti e connessi da intermedi mobili, ciascun enzima esercita un controllo (percentuale) differente sull’intero flusso metabolico; tale controllo è definito dal coefficiente di controllo di flusso, e la somma di tutti i coefficienti è uguale a 1. In un supercomplesso, invece, gli enzimi sono organizzati come subunità di una entità singola. In questo modo, ognuno di essi controlla in maniera esclusiva l’intero flusso metabolico e mostra un coefficiente di controllo di flusso pari a 1 per cui la somma dei coefficienti di tutti gli elementi del supercomplesso sarà maggiore di 1. In questa tesi sono riportati i risultati dell’analisi cinetica condotta su mitocondri di fegato di ratto (RLM) sia disaccoppiati, che accoppiati in condizioni fosforilanti (stato 3) e non fosforilanti (stato 4). L’analisi ha evidenziato l’associazione preferenziale del Complesso I e Complesso III sia in mitocondri disaccoppiati che accoppiati in stato 3 di respirazione. Quest’ultimo risultato permette per la prima volta di affermare che il supercomplesso I+III è presente anche in mitocondri integri capaci della fosforilazione ossidativa e che il trasferimento elettronico tra i due complessi possa effettivamente realizzarsi anche in condizioni fisiologiche, attraverso un fenomeno di channeling del Coenzima Q10. Sugli stessi campioni è stata eseguita anche un analisi strutturale mediante gel-elettroforesi (2D BN/SDS-PAGE) ed immunoblotting che, oltre a supportare i dati cinetici sullo stato di aggregazione dei complessi respiratori, ci ha permesso di evidenziare il ruolo del citocromo c nel supercomplesso, in particolare per il Complesso IV e di avviare uno studio comparativo esteso ai mitocondri di cuore bovino (BHM), di tubero di patata (POM) e di S. cerevisiae.

Relevância:

30.00% 30.00%

Publicador:

Resumo:

Galaxy clusters occupy a special position in the cosmic hierarchy as they are the largest bound structures in the Universe. There is now general agreement on a hierarchical picture for the formation of cosmic structures, in which galaxy clusters are supposed to form by accretion of matter and merging between smaller units. During merger events, shocks are driven by the gravity of the dark matter in the diffuse barionic component, which is heated up to the observed temperature. Radio and hard-X ray observations have discovered non-thermal components mixed with the thermal Intra Cluster Medium (ICM) and this is of great importance as it calls for a “revision” of the physics of the ICM. The bulk of present information comes from the radio observations which discovered an increasing number of Mpcsized emissions from the ICM, Radio Halos (at the cluster center) and Radio Relics (at the cluster periphery). These sources are due to synchrotron emission from ultra relativistic electrons diffusing through µG turbulent magnetic fields. Radio Halos are the most spectacular evidence of non-thermal components in the ICM and understanding the origin and evolution of these sources represents one of the most challenging goal of the theory of the ICM. Cluster mergers are the most energetic events in the Universe and a fraction of the energy dissipated during these mergers could be channelled into the amplification of the magnetic fields and into the acceleration of high energy particles via shocks and turbulence driven by these mergers. Present observations of Radio Halos (and possibly of hard X-rays) can be best interpreted in terms of the reacceleration scenario in which MHD turbulence injected during these cluster mergers re-accelerates high energy particles in the ICM. The physics involved in this scenario is very complex and model details are difficult to test, however this model clearly predicts some simple properties of Radio Halos (and resulting IC emission in the hard X-ray band) which are almost independent of the details of the adopted physics. In particular in the re-acceleration scenario MHD turbulence is injected and dissipated during cluster mergers and thus Radio Halos (and also the resulting hard X-ray IC emission) should be transient phenomena (with a typical lifetime <» 1 Gyr) associated with dynamically disturbed clusters. The physics of the re-acceleration scenario should produce an unavoidable cut-off in the spectrum of the re-accelerated electrons, which is due to the balance between turbulent acceleration and radiative losses. The energy at which this cut-off occurs, and thus the maximum frequency at which synchrotron radiation is produced, depends essentially on the efficiency of the acceleration mechanism so that observations at high frequencies are expected to catch only the most efficient phenomena while, in principle, low frequency radio surveys may found these phenomena much common in the Universe. These basic properties should leave an important imprint in the statistical properties of Radio Halos (and of non-thermal phenomena in general) which, however, have not been addressed yet by present modellings. The main focus of this PhD thesis is to calculate, for the first time, the expected statistics of Radio Halos in the context of the re-acceleration scenario. In particular, we shall address the following main questions: • Is it possible to model “self-consistently” the evolution of these sources together with that of the parent clusters? • How the occurrence of Radio Halos is expected to change with cluster mass and to evolve with redshift? How the efficiency to catch Radio Halos in galaxy clusters changes with the observing radio frequency? • How many Radio Halos are expected to form in the Universe? At which redshift is expected the bulk of these sources? • Is it possible to reproduce in the re-acceleration scenario the observed occurrence and number of Radio Halos in the Universe and the observed correlations between thermal and non-thermal properties of galaxy clusters? • Is it possible to constrain the magnetic field intensity and profile in galaxy clusters and the energetic of turbulence in the ICM from the comparison between model expectations and observations? Several astrophysical ingredients are necessary to model the evolution and statistical properties of Radio Halos in the context of re-acceleration model and to address the points given above. For these reason we deserve some space in this PhD thesis to review the important aspects of the physics of the ICM which are of interest to catch our goals. In Chapt. 1 we discuss the physics of galaxy clusters, and in particular, the clusters formation process; in Chapt. 2 we review the main observational properties of non-thermal components in the ICM; and in Chapt. 3 we focus on the physics of magnetic field and of particle acceleration in galaxy clusters. As a relevant application, the theory of Alfv´enic particle acceleration is applied in Chapt. 4 where we report the most important results from calculations we have done in the framework of the re-acceleration scenario. In this Chapter we show that a fraction of the energy of fluid turbulence driven in the ICM by the cluster mergers can be channelled into the injection of Alfv´en waves at small scales and that these waves can efficiently re-accelerate particles and trigger Radio Halos and hard X-ray emission. The main part of this PhD work, the calculation of the statistical properties of Radio Halos and non-thermal phenomena as expected in the context of the re-acceleration model and their comparison with observations, is presented in Chapts.5, 6, 7 and 8. In Chapt.5 we present a first approach to semi-analytical calculations of statistical properties of giant Radio Halos. The main goal of this Chapter is to model cluster formation, the injection of turbulence in the ICM and the resulting particle acceleration process. We adopt the semi–analytic extended Press & Schechter (PS) theory to follow the formation of a large synthetic population of galaxy clusters and assume that during a merger a fraction of the PdV work done by the infalling subclusters in passing through the most massive one is injected in the form of magnetosonic waves. Then the processes of stochastic acceleration of the relativistic electrons by these waves and the properties of the ensuing synchrotron (Radio Halos) and inverse Compton (IC, hard X-ray) emission of merging clusters are computed under the assumption of a constant rms average magnetic field strength in emitting volume. The main finding of these calculations is that giant Radio Halos are naturally expected only in the more massive clusters, and that the expected fraction of clusters with Radio Halos is consistent with the observed one. In Chapt. 6 we extend the previous calculations by including a scaling of the magnetic field strength with cluster mass. The inclusion of this scaling allows us to derive the expected correlations between the synchrotron radio power of Radio Halos and the X-ray properties (T, LX) and mass of the hosting clusters. For the first time, we show that these correlations, calculated in the context of the re-acceleration model, are consistent with the observed ones for typical µG strengths of the average B intensity in massive clusters. The calculations presented in this Chapter allow us to derive the evolution of the probability to form Radio Halos as a function of the cluster mass and redshift. The most relevant finding presented in this Chapter is that the luminosity functions of giant Radio Halos at 1.4 GHz are expected to peak around a radio power » 1024 W/Hz and to flatten (or cut-off) at lower radio powers because of the decrease of the electron re-acceleration efficiency in smaller galaxy clusters. In Chapt. 6 we also derive the expected number counts of Radio Halos and compare them with available observations: we claim that » 100 Radio Halos in the Universe can be observed at 1.4 GHz with deep surveys, while more than 1000 Radio Halos are expected to be discovered in the next future by LOFAR at 150 MHz. This is the first (and so far unique) model expectation for the number counts of Radio Halos at lower frequency and allows to design future radio surveys. Based on the results of Chapt. 6, in Chapt.7 we present a work in progress on a “revision” of the occurrence of Radio Halos. We combine past results from the NVSS radio survey (z » 0.05 − 0.2) with our ongoing GMRT Radio Halos Pointed Observations of 50 X-ray luminous galaxy clusters (at z » 0.2−0.4) and discuss the possibility to test our model expectations with the number counts of Radio Halos at z » 0.05 − 0.4. The most relevant limitation in the calculations presented in Chapt. 5 and 6 is the assumption of an “averaged” size of Radio Halos independently of their radio luminosity and of the mass of the parent clusters. This assumption cannot be released in the context of the PS formalism used to describe the formation process of clusters, while a more detailed analysis of the physics of cluster mergers and of the injection process of turbulence in the ICM would require an approach based on numerical (possible MHD) simulations of a very large volume of the Universe which is however well beyond the aim of this PhD thesis. On the other hand, in Chapt.8 we report our discovery of novel correlations between the size (RH) of Radio Halos and their radio power and between RH and the cluster mass within the Radio Halo region, MH. In particular this last “geometrical” MH − RH correlation allows us to “observationally” overcome the limitation of the “average” size of Radio Halos. Thus in this Chapter, by making use of this “geometrical” correlation and of a simplified form of the re-acceleration model based on the results of Chapt. 5 and 6 we are able to discuss expected correlations between the synchrotron power and the thermal cluster quantities relative to the radio emitting region. This is a new powerful tool of investigation and we show that all the observed correlations (PR − RH, PR − MH, PR − T, PR − LX, . . . ) now become well understood in the context of the re-acceleration model. In addition, we find that observationally the size of Radio Halos scales non-linearly with the virial radius of the parent cluster, and this immediately means that the fraction of the cluster volume which is radio emitting increases with cluster mass and thus that the non-thermal component in clusters is not self-similar.

Relevância:

30.00% 30.00%

Publicador:

Resumo:

In the present thesis a thourough multiwavelength analysis of a number of galaxy clusters known to be experiencing a merger event is presented. The bulk of the thesis consists in the analysis of deep radio observations of six merging clusters, which host extended radio emission on the cluster scale. A composite optical and X–ray analysis is performed in order to obtain a detailed and comprehensive picture of the cluster dynamics and possibly derive hints about the properties of the ongoing merger, such as the involved mass ratio, geometry and time scale. The combination of the high quality radio, optical and X–ray data allows us to investigate the implications of the ongoing merger for the cluster radio properties, focusing on the phenomenon of cluster scale diffuse radio sources, known as radio halos and relics. A total number of six merging clusters was selected for the present study: A3562, A697, A209, A521, RXCJ 1314.4–2515 and RXCJ 2003.5–2323. All of them were known, or suspected, to possess extended radio emission on the cluster scale, in the form of a radio halo and/or a relic. High sensitivity radio observations were carried out for all clusters using the Giant Metrewave Radio Telescope (GMRT) at low frequency (i.e. ≤ 610 MHz), in order to test the presence of a diffuse radio source and/or analyse in detail the properties of the hosted extended radio emission. For three clusters, the GMRT information was combined with higher frequency data from Very Large Array (VLA) observations. A re–analysis of the optical and X–ray data available in the public archives was carried out for all sources. Propriety deep XMM–Newton and Chandra observations were used to investigate the merger dynamics in A3562. Thanks to our multiwavelength analysis, we were able to confirm the existence of a radio halo and/or a relic in all clusters, and to connect their properties and origin to the reconstructed merging scenario for most of the investigated cases. • The existence of a small size and low power radio halo in A3562 was successfully explained in the theoretical framework of the particle re–acceleration model for the origin of radio halos, which invokes the re–acceleration of pre–existing relativistic electrons in the intracluster medium by merger–driven turbulence. • A giant radio halo was found in the massive galaxy cluster A209, which has likely undergone a past major merger and is currently experiencing a new merging process in a direction roughly orthogonal to the old merger axis. A giant radio halo was also detected in A697, whose optical and X–ray properties may be suggestive of a strong merger event along the line of sight. Given the cluster mass and the kind of merger, the existence of a giant radio halo in both clusters is expected in the framework of the re–acceleration scenario. • A radio relic was detected at the outskirts of A521, a highly dynamically disturbed cluster which is accreting a number of small mass concentrations. A possible explanation for its origin requires the presence of a merger–driven shock front at the location of the source. The spectral properties of the relic may support such interpretation and require a Mach number M < ∼ 3 for the shock. • The galaxy cluster RXCJ 1314.4–2515 is exceptional and unique in hosting two peripheral relic sources, extending on the Mpc scale, and a central small size radio halo. The existence of these sources requires the presence of an ongoing energetic merger. Our combined optical and X–ray investigation suggests that a strong merging process between two or more massive subclumps may be ongoing in this cluster. Thanks to forthcoming optical and X–ray observations, we will reconstruct in detail the merger dynamics and derive its energetics, to be related to the energy necessary for the particle re–acceleration in this cluster. • Finally, RXCJ 2003.5–2323 was found to possess a giant radio halo. This source is among the largest, most powerful and most distant (z=0.317) halos imaged so far. Unlike other radio halos, it shows a very peculiar morphology with bright clumps and filaments of emission, whose origin might be related to the relatively high redshift of the hosting cluster. Although very little optical and X–ray information is available about the cluster dynamical stage, the results of our optical analysis suggest the presence of two massive substructures which may be interacting with the cluster. Forthcoming observations in the optical and X–ray bands will allow us to confirm the expected high merging activity in this cluster. Throughout the present thesis a cosmology with H0 = 70 km s−1 Mpc−1, m=0.3 and =0.7 is assumed.

Relevância:

30.00% 30.00%

Publicador:

Resumo:

This doctoral work gains deeper insight into the dynamics of knowledge flows within and across clusters, unfolding their features, directions and strategic implications. Alliances, networks and personnel mobility are acknowledged as the three main channels of inter-firm knowledge flows, thus offering three heterogeneous measures to analyze the phenomenon. The interplay between the three channels and the richness of available research methods, has allowed for the elaboration of three different papers and perspectives. The common empirical setting is the IT cluster in Bangalore, for its distinguished features as a high-tech cluster and for its steady yearly two-digit growth around the service-based business model. The first paper deploys both a firm-level and a tie-level analysis, exploring the cases of 4 domestic companies and of 2 MNCs active the cluster, according to a cluster-based perspective. The distinction between business-domain knowledge and technical knowledge emerges from the qualitative evidence, further confirmed by quantitative analyses at tie-level. At firm-level, the specialization degree seems to be influencing the kind of knowledge shared, while at tie-level both the frequency of interaction and the governance mode prove to determine differences in the distribution of knowledge flows. The second paper zooms out and considers the inter-firm networks; particularly focusing on the role of cluster boundary, internal and external networks are analyzed, in their size, long-term orientation and exploration degree. The research method is purely qualitative and allows for the observation of the evolving strategic role of internal network: from exploitation-based to exploration-based. Moreover, a causal pattern is emphasized, linking the evolution and features of the external network to the evolution and features of internal network. The final paper addresses the softer and more micro-level side of knowledge flows: personnel mobility. A social capital perspective is here developed, which considers both employees’ acquisition and employees’ loss as building inter-firm ties, thus enhancing company’s overall social capital. Negative binomial regression analyses at dyad-level test the significant impact of cluster affiliation (cluster firms vs non-cluster firms), industry affiliation (IT firms vs non-IT fims) and foreign affiliation (MNCs vs domestic firms) in shaping the uneven distribution of personnel mobility, and thus of knowledge flows, among companies.

Relevância:

30.00% 30.00%

Publicador:

Resumo:

The present dissertation focuses on burnout and work engagement among teachers, with especial focus on the Job-Demands Resources Model: Chapter 1 focuses on teacher burnout. It aims to investigate the role of efficacy beliefs using negatively worded inefficacy items instead of positive ones and to establish whether depersonalization and cynism can be considered two different dimensions of the teacher burnout syndrome. Chapter 2 investigates the factorial validity of the instruments used to measure work engagement (i.e. Utrecht Work Engagement Scale, UWES-17 and UWES-9). Moreover, because the current study is partly longitudinal in nature, also the stability across time of engagement can be investigated. Finally, based on cluster-analyses, two groups that differ in levels of engagement are compared as far as their job- and personal resources (i.e. possibilities for personal development, work-life balance, and self-efficacy), positive organizational attitudes and behaviours (i.e., job satisfaction and organizational citizenship behaviour) and perceived health are concerned. Chapter 3 tests the JD-R model in a longitudinal way, by integrating also the role of personal resources (i.e. self-efficacy). This chapter seeks answers to questions on what are the most important job demands, job and personal resources contributing to discriminate burned-out teachers from non-burned-out teachers, as well as engaged teachers from non-engaged teachers. Chapter 4 uses a diary study to extend knowledge about the dynamic nature of the JD-R model by considering between- and within-person variations with regard to both motivational and health impairment processes.

Relevância:

30.00% 30.00%

Publicador:

Resumo:

In the present work we perform an econometric analysis of the Tribal art market. To this aim, we use a unique and original database that includes information on Tribal art market auctions worldwide from 1998 to 2011. In Literature, art prices are modelled through the hedonic regression model, a classic fixed-effect model. The main drawback of the hedonic approach is the large number of parameters, since, in general, art data include many categorical variables. In this work, we propose a multilevel model for the analysis of Tribal art prices that takes into account the influence of time on artwork prices. In fact, it is natural to assume that time exerts an influence over the price dynamics in various ways. Nevertheless, since the set of objects change at every auction date, we do not have repeated measurements of the same items over time. Hence, the dataset does not constitute a proper panel; rather, it has a two-level structure in that items, level-1 units, are grouped in time points, level-2 units. The main theoretical contribution is the extension of classical multilevel models to cope with the case described above. In particular, we introduce a model with time dependent random effects at the second level. We propose a novel specification of the model, derive the maximum likelihood estimators and implement them through the E-M algorithm. We test the finite sample properties of the estimators and the validity of the own-written R-code by means of a simulation study. Finally, we show that the new model improves considerably the fit of the Tribal art data with respect to both the hedonic regression model and the classic multilevel model.

Relevância:

30.00% 30.00%

Publicador:

Resumo:

The aim of this thesis is to investigate the nature of quantum computation and the question of the quantum speed-up over classical computation by comparing two different quantum computational frameworks, the traditional quantum circuit model and the cluster-state quantum computer. After an introductory survey of the theoretical and epistemological questions concerning quantum computation, the first part of this thesis provides a presentation of cluster-state computation suitable for a philosophical audience. In spite of the computational equivalence between the two frameworks, their differences can be considered as structural. Entanglement is shown to play a fundamental role in both quantum circuits and cluster-state computers; this supports, from a new perspective, the argument that entanglement can reasonably explain the quantum speed-up over classical computation. However, quantum circuits and cluster-state computers diverge with regard to one of the explanations of quantum computation that actually accords a central role to entanglement, i.e. the Everett interpretation. It is argued that, while cluster-state quantum computation does not show an Everettian failure in accounting for the computational processes, it threatens that interpretation of being not-explanatory. This analysis presented here should be integrated in a more general work in order to include also further frameworks of quantum computation, e.g. topological quantum computation. However, what is revealed by this work is that the speed-up question does not capture all that is at stake: both quantum circuits and cluster-state computers achieve the speed-up, but the challenges that they posit go besides that specific question. Then, the existence of alternative equivalent quantum computational models suggests that the ultimate question should be moved from the speed-up to a sort of “representation theorem” for quantum computation, to be meant as the general goal of identifying the physical features underlying these alternative frameworks that allow for labelling those frameworks as “quantum computation”.