8 resultados para R12 - Size and Spatial Distributions of Regional Economic Activity
em AMS Tesi di Dottorato - Alm@DL - Università di Bologna
Resumo:
China is a large country characterized by remarkable growth and distinct regional diversity. Spatial disparity has always been a hot issue since China has been struggling to follow a balanced growth path but still confronting with unprecedented pressures and challenges. To better understand the inequality level benchmarking spatial distributions of Chinese provinces and municipalities and estimate dynamic trajectory of sustainable development in China, I constructed the Composite Index of Regional Development (CIRD) with five sub pillars/dimensions involving Macroeconomic Index (MEI), Science and Innovation Index (SCI), Environmental Sustainability Index (ESI), Human Capital Index (HCI) and Public Facilities Index (PFI), endeavoring to cover various fields of regional socioeconomic development. Ranking reports on the five sub dimensions and aggregated CIRD were provided in order to better measure the developmental degrees of 31 or 30 Chinese provinces and municipalities over 13 years from 1998 to 2010 as the time interval of three “Five-year Plans”. Further empirical applications of this CIRD focused on clustering and convergence estimation, attempting to fill up the gap in quantifying the developmental levels of regional comprehensive socioeconomics and estimating the dynamic convergence trajectory of regional sustainable development in a long run. Four clusters were benchmarked geographically-oriented in the map on the basis of cluster analysis, and club-convergence was observed in the Chinese provinces and municipalities based on stochastic kernel density estimation.
Resumo:
The intensity of regional specialization in specific activities, and conversely, the level of industrial concentration in specific locations, has been used as a complementary evidence for the existence and significance of externalities. Additionally, economists have mainly focused the debate on disentangling the sources of specialization and concentration processes according to three vectors: natural advantages, internal, and external scale economies. The arbitrariness of partitions plays a key role in capturing these effects, while the selection of the partition would have to reflect the actual characteristics of the economy. Thus, the identification of spatial boundaries to measure specialization becomes critical, since most likely the model will be adapted to different scales of distance, and be influenced by different types of externalities or economies of agglomeration, which are based on the mechanisms of interaction with particular requirements of spatial proximity. This work is based on the analysis of the spatial aspect of economic specialization supported by the manufacturing industry case. The main objective is to propose, for discrete and continuous space: i) a measure of global specialization; ii) a local disaggregation of the global measure; and iii) a spatial clustering method for the identification of specialized agglomerations.
Resumo:
The presented study carried out an analysis on rural landscape changes. In particular the study focuses on the understanding of driving forces acting on the rural built environment using a statistical spatial model implemented through GIS techniques. It is well known that the study of landscape changes is essential for a conscious decision making in land planning. From a bibliography review results a general lack of studies dealing with the modeling of rural built environment and hence a theoretical modelling approach for such purpose is needed. The advancement in technology and modernity in building construction and agriculture have gradually changed the rural built environment. In addition, the phenomenon of urbanization of a determined the construction of new volumes that occurred beside abandoned or derelict rural buildings. Consequently there are two types of transformation dynamics affecting mainly the rural built environment that can be observed: the conversion of rural buildings and the increasing of building numbers. It is the specific aim of the presented study to propose a methodology for the development of a spatial model that allows the identification of driving forces that acted on the behaviours of the building allocation. In fact one of the most concerning dynamic nowadays is related to an irrational expansion of buildings sprawl across landscape. The proposed methodology is composed by some conceptual steps that cover different aspects related to the development of a spatial model: the selection of a response variable that better describe the phenomenon under study, the identification of possible driving forces, the sampling methodology concerning the collection of data, the most suitable algorithm to be adopted in relation to statistical theory and method used, the calibration process and evaluation of the model. A different combination of factors in various parts of the territory generated favourable or less favourable conditions for the building allocation and the existence of buildings represents the evidence of such optimum. Conversely the absence of buildings expresses a combination of agents which is not suitable for building allocation. Presence or absence of buildings can be adopted as indicators of such driving conditions, since they represent the expression of the action of driving forces in the land suitability sorting process. The existence of correlation between site selection and hypothetical driving forces, evaluated by means of modeling techniques, provides an evidence of which driving forces are involved in the allocation dynamic and an insight on their level of influence into the process. GIS software by means of spatial analysis tools allows to associate the concept of presence and absence with point futures generating a point process. Presence or absence of buildings at some site locations represent the expression of these driving factors interaction. In case of presences, points represent locations of real existing buildings, conversely absences represent locations were buildings are not existent and so they are generated by a stochastic mechanism. Possible driving forces are selected and the existence of a causal relationship with building allocations is assessed through a spatial model. The adoption of empirical statistical models provides a mechanism for the explanatory variable analysis and for the identification of key driving variables behind the site selection process for new building allocation. The model developed by following the methodology is applied to a case study to test the validity of the methodology. In particular the study area for the testing of the methodology is represented by the New District of Imola characterized by a prevailing agricultural production vocation and were transformation dynamic intensively occurred. The development of the model involved the identification of predictive variables (related to geomorphologic, socio-economic, structural and infrastructural systems of landscape) capable of representing the driving forces responsible for landscape changes.. The calibration of the model is carried out referring to spatial data regarding the periurban and rural area of the study area within the 1975-2005 time period by means of Generalised linear model. The resulting output from the model fit is continuous grid surface where cells assume values ranged from 0 to 1 of probability of building occurrences along the rural and periurban area of the study area. Hence the response variable assesses the changes in the rural built environment occurred in such time interval and is correlated to the selected explanatory variables by means of a generalized linear model using logistic regression. Comparing the probability map obtained from the model to the actual rural building distribution in 2005, the interpretation capability of the model can be evaluated. The proposed model can be also applied to the interpretation of trends which occurred in other study areas, and also referring to different time intervals, depending on the availability of data. The use of suitable data in terms of time, information, and spatial resolution and the costs related to data acquisition, pre-processing, and survey are among the most critical aspects of model implementation. Future in-depth studies can focus on using the proposed model to predict short/medium-range future scenarios for the rural built environment distribution in the study area. In order to predict future scenarios it is necessary to assume that the driving forces do not change and that their levels of influence within the model are not far from those assessed for the time interval used for the calibration.
Resumo:
This doctoral thesis aims at contributing to the literature on transition economies focusing on the Russian Federations and in particular on regional income convergence and fertility patterns. The first two chapter deal with the issue of income convergence across regions. Chapter 1 provides an historical-institutional analysis of the period between the late years of the Soviet Union and the last decade of economic growth and a presentation of the sample with a description of gross regional product composition, agrarian or industrial vocation, labor. Chapter 2 contributes to the literature on exploratory spatial data analysis with a application to a panel of 77 regions in the period 1994-2008. It provides an analysis of spatial patterns and it extends the theoretical framework of growth regressions controlling for spatial correlation and heterogeneity. Chapter 3 analyses the national demographic patterns since 1960 and provides a review of the policies on maternity leave and family benefits. Data sources are the Statistical Yearbooks of USSR, the Statistical Yearbooks of the Russian Soviet Federative Socialist Republic and the Demographic Yearbooks of Russia. Chapter 4 analyses the demographic patterns in light of the theoretical framework of the Becker model, the Second Demographic Transition and an economic-crisis argument. With national data from 1960, the theoretically issue of the pro or countercyclical relation between income and fertility is graphically analyzed and discussed, together with female employment and education. With regional data after 1994 different panel data models are tested. Individual level data from the Russian Longitudinal Monitoring Survey are employed using the logit model. Chapter 5 employs data from the Generations and Gender Survey by UNECE to focus on postponement and second births intentions. Postponement is studied through cohort analysis of mean maternal age at first birth, while the methodology used for second birth intentions is the ordered logit model.
Resumo:
This research deals with the deepening and use of an environmental accounting matrix in Emilia-Romagna, RAMEA air emissions (regional NAMEA), carried out by the Regional Environment Agency (Arpa) in an European project. After a depiction of the international context regarding the widespread needing to integrate economic indicators and go beyond conventional reporting system, this study explains the structure, update and development of the tool. The overall aim is to outline the matrix for environmental assessments of regional plans, draw up sustainable reports and monitor effects of regional policies in a sustainable development perspective. The work focused on an application of a Shift-Share model, on the integration with eco-taxes, industrial waste production, energy consumptions, on applications of the extended RAMEA as a policy tool, following Eurostat guidelines. The common thread is the eco-efficiency (economic-environmental efficiency) index. The first part, in English, treats the methodology used to build a more complete tool; in the second part RAMEA has been applied on two regional case studies, in Italian, to support decision makers regarding Strategic Environmental Assessments’ processes (2001/42/EC). The aim is to support an evidence-based policy making by integrating sustainable development concerns at all levels. The first case study regards integrated environmental-economic analyses in support to the SEA of the Regional Waste management plan. For the industrial waste production an extended and updated RAMEA has been developed as a useful policy tool, to help in analysing and monitoring the state of environmental-economic performances. The second case study deals with the environmental report for the SEA of the Regional Program concerning productive activities. RAMEA has been applied aiming to an integrated environmental-economic analysis of the context, to investigate the performances of the regional production chains and to depict and monitor the area where the program should be carried out, from an integrated environmental-economic perspective.
Resumo:
The advances that have been characterizing spatial econometrics in recent years are mostly theoretical and have not found an extensive empirical application yet. In this work we aim at supplying a review of the main tools of spatial econometrics and to show an empirical application for one of the most recently introduced estimators. Despite the numerous alternatives that the econometric theory provides for the treatment of spatial (and spatiotemporal) data, empirical analyses are still limited by the lack of availability of the correspondent routines in statistical and econometric software. Spatiotemporal modeling represents one of the most recent developments in spatial econometric theory and the finite sample properties of the estimators that have been proposed are currently being tested in the literature. We provide a comparison between some estimators (a quasi-maximum likelihood, QML, estimator and some GMM-type estimators) for a fixed effects dynamic panel data model under certain conditions, by means of a Monte Carlo simulation analysis. We focus on different settings, which are characterized either by fully stable or quasi-unit root series. We also investigate the extent of the bias that is caused by a non-spatial estimation of a model when the data are characterized by different degrees of spatial dependence. Finally, we provide an empirical application of a QML estimator for a time-space dynamic model which includes a temporal, a spatial and a spatiotemporal lag of the dependent variable. This is done by choosing a relevant and prolific field of analysis, in which spatial econometrics has only found limited space so far, in order to explore the value-added of considering the spatial dimension of the data. In particular, we study the determinants of cropland value in Midwestern U.S.A. in the years 1971-2009, by taking the present value model (PVM) as the theoretical framework of analysis.
Resumo:
A critical point in the analysis of ground displacements time series is the development of data driven methods that allow the different sources that generate the observed displacements to be discerned and characterised. A widely used multivariate statistical technique is the Principal Component Analysis (PCA), which allows reducing the dimensionality of the data space maintaining most of the variance of the dataset explained. Anyway, PCA does not perform well in finding the solution to the so-called Blind Source Separation (BSS) problem, i.e. in recovering and separating the original sources that generated the observed data. This is mainly due to the assumptions on which PCA relies: it looks for a new Euclidean space where the projected data are uncorrelated. The Independent Component Analysis (ICA) is a popular technique adopted to approach this problem. However, the independence condition is not easy to impose, and it is often necessary to introduce some approximations. To work around this problem, I use a variational bayesian ICA (vbICA) method, which models the probability density function (pdf) of each source signal using a mix of Gaussian distributions. This technique allows for more flexibility in the description of the pdf of the sources, giving a more reliable estimate of them. Here I present the application of the vbICA technique to GPS position time series. First, I use vbICA on synthetic data that simulate a seismic cycle (interseismic + coseismic + postseismic + seasonal + noise) and a volcanic source, and I study the ability of the algorithm to recover the original (known) sources of deformation. Secondly, I apply vbICA to different tectonically active scenarios, such as the 2009 L'Aquila (central Italy) earthquake, the 2012 Emilia (northern Italy) seismic sequence, and the 2006 Guerrero (Mexico) Slow Slip Event (SSE).
Resumo:
As a large and long-lived species with high economic value, restricted spawning areas and short spawning periods, the Atlantic bluefin tuna (BFT; Thunnus thynnus) is particularly susceptible to over-exploitation. Although BFT have been targeted by fisheries in the Mediterranean Sea for thousands of years, it has only been in these last decades that the exploitation rate has reached far beyond sustainable levels. An understanding of the population structure, spatial dynamics, exploitation rates and the environmental variables that affect BFT is crucial for the conservation of the species. The aims of this PhD project were 1) to assess the accuracy of larval identification methods, 2) determine the genetic structure of modern BFT populations, 3) assess the self-recruitment rate in the Gulf of Mexico and Mediterranean spawning areas, 4) estimate the immigration rate of BFT to feeding aggregations from the various spawning areas, and 5) develop tools capable of investigating the temporal stability of population structuring in the Mediterranean Sea. Several weaknesses in modern morphology-based taxonomy including demographic decline of expert taxonomists, flawed identification keys, reluctance of the taxonomic community to embrace advances in digital communications and a general scarcity of modern user-friendly materials are reviewed. Barcoding of scombrid larvae revealed important differences in the accuracy of the taxonomic identifications carried out by different ichthyoplanktologists following morphology-based methods. Using a Genotyping-by-Sequencing a panel of 95 SNPs was developed and used to characterize the population structuring of BFT and composition of adult feeding aggregations. Using novel molecular techniques, DNA was extracted from bluefin tuna vertebrae excavated from late iron age, ancient roman settlements Byzantine-era Constantinople and a 20th century collection. A second panel of 96 SNPs was developed to genotype historical and modern samples in order to elucidate changes in population structuring and allele frequencies of loci associated with selective traits.