4 resultados para Quasi-Likelihood
em AMS Tesi di Dottorato - Alm@DL - Università di Bologna
Resumo:
This work deals with some classes of linear second order partial differential operators with non-negative characteristic form and underlying non- Euclidean structures. These structures are determined by families of locally Lipschitz-continuous vector fields in RN, generating metric spaces of Carnot- Carath´eodory type. The Carnot-Carath´eodory metric related to a family {Xj}j=1,...,m is the control distance obtained by minimizing the time needed to go from two points along piecewise trajectories of vector fields. We are mainly interested in the causes in which a Sobolev-type inequality holds with respect to the X-gradient, and/or the X-control distance is Doubling with respect to the Lebesgue measure in RN. This study is divided into three parts (each corresponding to a chapter), and the subject of each one is a class of operators that includes the class of the subsequent one. In the first chapter, after recalling “X-ellipticity” and related concepts introduced by Kogoj and Lanconelli in [KL00], we show a Maximum Principle for linear second order differential operators for which we only assume a Sobolev-type inequality together with a lower terms summability. Adding some crucial hypotheses on measure and on vector fields (Doubling property and Poincar´e inequality), we will be able to obtain some Liouville-type results. This chapter is based on the paper [GL03] by Guti´errez and Lanconelli. In the second chapter we treat some ultraparabolic equations on Lie groups. In this case RN is the support of a Lie group, and moreover we require that vector fields satisfy left invariance. After recalling some results of Cinti [Cin07] about this class of operators and associated potential theory, we prove a scalar convexity for mean-value operators of L-subharmonic functions, where L is our differential operator. In the third chapter we prove a necessary and sufficient condition of regularity, for boundary points, for Dirichlet problem on an open subset of RN related to sub-Laplacian. On a Carnot group we give the essential background for this type of operator, and introduce the notion of “quasi-boundedness”. Then we show the strict relationship between this notion, the fundamental solution of the given operator, and the regularity of the boundary points.
Resumo:
The advances that have been characterizing spatial econometrics in recent years are mostly theoretical and have not found an extensive empirical application yet. In this work we aim at supplying a review of the main tools of spatial econometrics and to show an empirical application for one of the most recently introduced estimators. Despite the numerous alternatives that the econometric theory provides for the treatment of spatial (and spatiotemporal) data, empirical analyses are still limited by the lack of availability of the correspondent routines in statistical and econometric software. Spatiotemporal modeling represents one of the most recent developments in spatial econometric theory and the finite sample properties of the estimators that have been proposed are currently being tested in the literature. We provide a comparison between some estimators (a quasi-maximum likelihood, QML, estimator and some GMM-type estimators) for a fixed effects dynamic panel data model under certain conditions, by means of a Monte Carlo simulation analysis. We focus on different settings, which are characterized either by fully stable or quasi-unit root series. We also investigate the extent of the bias that is caused by a non-spatial estimation of a model when the data are characterized by different degrees of spatial dependence. Finally, we provide an empirical application of a QML estimator for a time-space dynamic model which includes a temporal, a spatial and a spatiotemporal lag of the dependent variable. This is done by choosing a relevant and prolific field of analysis, in which spatial econometrics has only found limited space so far, in order to explore the value-added of considering the spatial dimension of the data. In particular, we study the determinants of cropland value in Midwestern U.S.A. in the years 1971-2009, by taking the present value model (PVM) as the theoretical framework of analysis.
Resumo:
Small-scale dynamic stochastic general equilibrium have been treated as the benchmark of much of the monetary policy literature, given their ability to explain the impact of monetary policy on output, inflation and financial markets. One cause of the empirical failure of New Keynesian models is partially due to the Rational Expectations (RE) paradigm, which entails a tight structure on the dynamics of the system. Under this hypothesis, the agents are assumed to know the data genereting process. In this paper, we propose the econometric analysis of New Keynesian DSGE models under an alternative expectations generating paradigm, which can be regarded as an intermediate position between rational expectations and learning, nameley an adapted version of the "Quasi-Rational" Expectatations (QRE) hypothesis. Given the agents' statistical model, we build a pseudo-structural form from the baseline system of Euler equations, imposing that the length of the reduced form is the same as in the `best' statistical model.