7 resultados para Quasi-Inverse

em AMS Tesi di Dottorato - Alm@DL - Università di Bologna


Relevância:

20.00% 20.00%

Publicador:

Resumo:

This work deals with some classes of linear second order partial differential operators with non-negative characteristic form and underlying non- Euclidean structures. These structures are determined by families of locally Lipschitz-continuous vector fields in RN, generating metric spaces of Carnot- Carath´eodory type. The Carnot-Carath´eodory metric related to a family {Xj}j=1,...,m is the control distance obtained by minimizing the time needed to go from two points along piecewise trajectories of vector fields. We are mainly interested in the causes in which a Sobolev-type inequality holds with respect to the X-gradient, and/or the X-control distance is Doubling with respect to the Lebesgue measure in RN. This study is divided into three parts (each corresponding to a chapter), and the subject of each one is a class of operators that includes the class of the subsequent one. In the first chapter, after recalling “X-ellipticity” and related concepts introduced by Kogoj and Lanconelli in [KL00], we show a Maximum Principle for linear second order differential operators for which we only assume a Sobolev-type inequality together with a lower terms summability. Adding some crucial hypotheses on measure and on vector fields (Doubling property and Poincar´e inequality), we will be able to obtain some Liouville-type results. This chapter is based on the paper [GL03] by Guti´errez and Lanconelli. In the second chapter we treat some ultraparabolic equations on Lie groups. In this case RN is the support of a Lie group, and moreover we require that vector fields satisfy left invariance. After recalling some results of Cinti [Cin07] about this class of operators and associated potential theory, we prove a scalar convexity for mean-value operators of L-subharmonic functions, where L is our differential operator. In the third chapter we prove a necessary and sufficient condition of regularity, for boundary points, for Dirichlet problem on an open subset of RN related to sub-Laplacian. On a Carnot group we give the essential background for this type of operator, and introduce the notion of “quasi-boundedness”. Then we show the strict relationship between this notion, the fundamental solution of the given operator, and the regularity of the boundary points.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

In my PhD thesis I propose a Bayesian nonparametric estimation method for structural econometric models where the functional parameter of interest describes the economic agent's behavior. The structural parameter is characterized as the solution of a functional equation, or by using more technical words, as the solution of an inverse problem that can be either ill-posed or well-posed. From a Bayesian point of view, the parameter of interest is a random function and the solution to the inference problem is the posterior distribution of this parameter. A regular version of the posterior distribution in functional spaces is characterized. However, the infinite dimension of the considered spaces causes a problem of non continuity of the solution and then a problem of inconsistency, from a frequentist point of view, of the posterior distribution (i.e. problem of ill-posedness). The contribution of this essay is to propose new methods to deal with this problem of ill-posedness. The first one consists in adopting a Tikhonov regularization scheme in the construction of the posterior distribution so that I end up with a new object that I call regularized posterior distribution and that I guess it is solution of the inverse problem. The second approach consists in specifying a prior distribution on the parameter of interest of the g-prior type. Then, I detect a class of models for which the prior distribution is able to correct for the ill-posedness also in infinite dimensional problems. I study asymptotic properties of these proposed solutions and I prove that, under some regularity condition satisfied by the true value of the parameter of interest, they are consistent in a "frequentist" sense. Once I have set the general theory, I apply my bayesian nonparametric methodology to different estimation problems. First, I apply this estimator to deconvolution and to hazard rate, density and regression estimation. Then, I consider the estimation of an Instrumental Regression that is useful in micro-econometrics when we have to deal with problems of endogeneity. Finally, I develop an application in finance: I get the bayesian estimator for the equilibrium asset pricing functional by using the Euler equation defined in the Lucas'(1978) tree-type models.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

BTES (borehole thermal energy storage)systems exchange thermal energy by conduction with the surrounding ground through borehole materials. The spatial variability of the geological properties and the space-time variability of hydrogeological conditions affect the real power rate of heat exchangers and, consequently, the amount of energy extracted from / injected into the ground. For this reason, it is not an easy task to identify the underground thermal properties to use when designing. At the current state of technology, Thermal Response Test (TRT) is the in situ test for the characterization of ground thermal properties with the higher degree of accuracy, but it doesn’t fully solve the problem of characterizing the thermal properties of a shallow geothermal reservoir, simply because it characterizes only the neighborhood of the heat exchanger at hand and only for the test duration. Different analytical and numerical models exist for the characterization of shallow geothermal reservoir, but they are still inadequate and not exhaustive: more sophisticated models must be taken into account and a geostatistical approach is needed to tackle natural variability and estimates uncertainty. The approach adopted for reservoir characterization is the “inverse problem”, typical of oil&gas field analysis. Similarly, we create different realizations of thermal properties by direct sequential simulation and we find the best one fitting real production data (fluid temperature along time). The software used to develop heat production simulation is FEFLOW 5.4 (Finite Element subsurface FLOW system). A geostatistical reservoir model has been set up based on literature thermal properties data and spatial variability hypotheses, and a real TRT has been tested. Then we analyzed and used as well two other codes (SA-Geotherm and FV-Geotherm) which are two implementation of the same numerical model of FEFLOW (Al-Khoury model).

Relevância:

20.00% 20.00%

Publicador:

Resumo:

Massive parallel robots (MPRs) driven by discrete actuators are force regulated robots that undergo continuous motions despite being commanded through a finite number of states only. Designing a real-time control of such systems requires fast and efficient methods for solving their inverse static analysis (ISA), which is a challenging problem and the subject of this thesis. In particular, five Artificial intelligence methods are proposed to investigate the on-line computation and the generalization error of ISA problem of a class of MPRs featuring three-state force actuators and one degree of revolute motion.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

Small-scale dynamic stochastic general equilibrium have been treated as the benchmark of much of the monetary policy literature, given their ability to explain the impact of monetary policy on output, inflation and financial markets. One cause of the empirical failure of New Keynesian models is partially due to the Rational Expectations (RE) paradigm, which entails a tight structure on the dynamics of the system. Under this hypothesis, the agents are assumed to know the data genereting process. In this paper, we propose the econometric analysis of New Keynesian DSGE models under an alternative expectations generating paradigm, which can be regarded as an intermediate position between rational expectations and learning, nameley an adapted version of the "Quasi-Rational" Expectatations (QRE) hypothesis. Given the agents' statistical model, we build a pseudo-structural form from the baseline system of Euler equations, imposing that the length of the reduced form is the same as in the `best' statistical model.