2 resultados para Quantum information theory

em AMS Tesi di Dottorato - Alm@DL - Università di Bologna


Relevância:

100.00% 100.00%

Publicador:

Resumo:

The research work concerns the analysis of the foundations of Quantum Field Theory carried out from an educational perspective. The whole research has been driven by two questions: • How the concept of object changes when moving from classical to contemporary physics? • How are the concepts of field and interaction shaped and conceptualized within contemporary physics? What makes quantum field and interaction similar to and what makes them different from the classical ones? The whole work has been developed through several studies: 1. A study aimed to analyze the formal and conceptual structures characterizing the description of the continuous systems that remain invariant in the transition from classical to contemporary physics. 2. A study aimed to analyze the changes in the meanings of the concepts of field and interaction in the transition to quantum field theory. 3. A detailed study of the Klein-Gordon equation aimed at analyzing, in a case considered emblematic, some interpretative (conceptual and didactical) problems in the concept of field that the university textbooks do not address explicitly. 4. A study concerning the application of the “Discipline-Culture” Model elaborated by I. Galili to the analysis of the Klein-Gordon equation, in order to reconstruct the meanings of the equation from a cultural perspective. 5. A critical analysis, in the light of the results of the studies mentioned above, of the existing proposals for teaching basic concepts of Quantum Field Theory and particle physics at the secondary school level or in introductory physics university courses.

Relevância:

80.00% 80.00%

Publicador:

Resumo:

The field of complex systems is a growing body of knowledge, It can be applied to countless different topics, from physics to computer science, biology, information theory and sociology. The main focus of this work is the use of microscopic models to study the behavior of urban mobility, which characteristics make it a paradigmatic example of complexity. In particular, simulations are used to investigate phase changes in a finite size open Manhattan-like urban road network under different traffic conditions, in search for the parameters to identify phase transitions, equilibrium and non-equilibrium conditions . It is shown how the flow-density macroscopic fundamental diagram of the simulation shows,like real traffic, hysteresis behavior in the transition from the congested phase to the free flow phase, and how the different regimes can be identified studying the statistics of road occupancy.