2 resultados para Quantum Chemistry Calculation

em AMS Tesi di Dottorato - Alm@DL - Università di Bologna


Relevância:

80.00% 80.00%

Publicador:

Resumo:

The rotational spectroscopy of several sulfur bearing molecules and their 1:1 water complex, cysteamine, cysteamine monohydrate, 1-thioglycerol and 1-propanethiol were studied in the micro-wave and (or) millimeter-wave range. Precise laboratory spectra and conformational information were obtained. For cysteamine, the conformational space (at the B3LYP-GD3(BJ)/Def2-TZVP level) and the measurement and analysis of its rotational spectra in the 6 - 18 and 59.6 - 120 GHz are reported. The hyperfine structure of the rotational spectra was observed and analyzed for the first time. Based on the measured spectra, a search of the different conformers of cysteamine was performed toward the G+0.693-0.027 molecular cloud. We computed the upper limit of the ratio of ethanolamine to cysteamine, which is >0.8−5.3. For the cysteamine monohydrate, the conformational space was explored (at the B3LYP-GD3(BJ)/Def2-TZVP level). The rotational spectra of the cysteamine monohydrate complex have been assigned in the frequency range 6 – 18.5 GHz. The global minimum, Conf A1, was the only observed one. The 34S isotopologue of Conf A1 was observed in natural abundance, while 18O isotopologue was detected by introducing the H218O. In this conformer, the water molecule plays both proton donor and acceptor roles, forming a OHw···N interaction, a SH···Ow interaction and a CH···Ow interaction. The conformational space of 1-thioglycerol has been characterized by quantum mechanical calculation and its rotational spectrum has been recorded and analyzed in the frequency range 59.6 - 78.4 GHz. The global minimum of 1-thioglycerol is gTg’Gg’ and were detected together with gTg’Tg and gGgG’g, while the two detected conformers are g’G’gGg’ and tGgGg. The high-resolution rotational spectrum of 1-propanethiol in the frequency range 59.6 – 78.4 GHz was measured. Two conformers, Gg and Tg, were observed and their spectra were analyzed. Considering the overall conformational space calculated at the B3LYP-GD3(BJ)/Def2-TZVP level they are among the lowest energy conformers.

Relevância:

30.00% 30.00%

Publicador:

Resumo:

Catalysis plays a vital role in modern synthetic chemistry. However, even if conventional catalysis (organo-catalysis, metal-catalysis and enzyme-catalysis) has provided outstanding results, various unconventional ways to make chemical reactions more effective appear now very promising. Computational methods can be of great help to reach a deeper comprehension of these chemical processes. The methodologies employed in this thesis are Quantum-Mechanical (QM), Molecular Mechanics (MM) and hybrid Quantum-Mechanical/Molecular Mechanics (QM/MM) methods. In this abstract the results are briefly summarised. The first unconventional catalysis investigated consists in the application of Oriented External Electric Fields (OEEFs) to SN2 and 4e-electrocyclic reactions. SN2 reactions with back-side mechanism can be catalysed or inhibited by the presence of an OEEF. Moreover, OEEFs can inhibit back-side mechanism (Walden inversion of configuration) and promote the naturally unfavoured front-side mechanism (retention of configuration). Electrocyclic ring opening reaction of 3-substituted cyclobutene molecules can occur with inward or outward mechanisms depending on the nature of substituent groups on the cyclobutene structure (torquoselectivity principle). OEEFs can catalyse the naturally favoured pathway or circumvent the torquoselectivity principle leading to different stereoisomers. The second case study is based on Carbon Nanotubes (CNTs) working as nano-reactors: the reaction of ethyl chloride with chloride anion inside CNTs was investigated. In addition to the SN2 mechanism, syn and anti-E2 reactions are possible. These reactions inside CNTs of different radii were examined with hybrid QM/MM methods, finding that these processes can be both catalysed and inhibited by the CNT diameter. The results suggest that electrostatic effects govern the activation energy variations inside CNTs. Finally, a new biochemical approach, based on the use of DNA catalyst was investigated at QM level. Deoxyribozyme 9DB1 catalyses the RNA ligation allowing the regioselective formation of the 3'-5' bond, following an addition-elimination two-step mechanism.