2 resultados para Quantitative methodology
em AMS Tesi di Dottorato - Alm@DL - Università di Bologna
Resumo:
The increasing aversion to technological risks of the society requires the development of inherently safer and environmentally friendlier processes, besides assuring the economic competitiveness of the industrial activities. The different forms of impact (e.g. environmental, economic and societal) are frequently characterized by conflicting reduction strategies and must be holistically taken into account in order to identify the optimal solutions in process design. Though the literature reports an extensive discussion of strategies and specific principles, quantitative assessment tools are required to identify the marginal improvements in alternative design options, to allow the trade-off among contradictory aspects and to prevent the “risk shift”. In the present work a set of integrated quantitative tools for design assessment (i.e. design support system) was developed. The tools were specifically dedicated to the implementation of sustainability and inherent safety in process and plant design activities, with respect to chemical and industrial processes in which substances dangerous for humans and environment are used or stored. The tools were mainly devoted to the application in the stages of “conceptual” and “basic design”, when the project is still open to changes (due to the large number of degrees of freedom) which may comprise of strategies to improve sustainability and inherent safety. The set of developed tools includes different phases of the design activities, all through the lifecycle of a project (inventories, process flow diagrams, preliminary plant lay-out plans). The development of such tools gives a substantial contribution to fill the present gap in the availability of sound supports for implementing safety and sustainability in early phases of process design. The proposed decision support system was based on the development of a set of leading key performance indicators (KPIs), which ensure the assessment of economic, societal and environmental impacts of a process (i.e. sustainability profile). The KPIs were based on impact models (also complex), but are easy and swift in the practical application. Their full evaluation is possible also starting from the limited data available during early process design. Innovative reference criteria were developed to compare and aggregate the KPIs on the basis of the actual sitespecific impact burden and the sustainability policy. Particular attention was devoted to the development of reliable criteria and tools for the assessment of inherent safety in different stages of the project lifecycle. The assessment follows an innovative approach in the analysis of inherent safety, based on both the calculation of the expected consequences of potential accidents and the evaluation of the hazards related to equipment. The methodology overrides several problems present in the previous methods proposed for quantitative inherent safety assessment (use of arbitrary indexes, subjective judgement, build-in assumptions, etc.). A specific procedure was defined for the assessment of the hazards related to the formations of undesired substances in chemical systems undergoing “out of control” conditions. In the assessment of layout plans, “ad hoc” tools were developed to account for the hazard of domino escalations and the safety economics. The effectiveness and value of the tools were demonstrated by the application to a large number of case studies concerning different kinds of design activities (choice of materials, design of the process, of the plant, of the layout) and different types of processes/plants (chemical industry, storage facilities, waste disposal). An experimental survey (analysis of the thermal stability of isomers of nitrobenzaldehyde) provided the input data necessary to demonstrate the method for inherent safety assessment of materials.
Resumo:
The so called cascading events, which lead to high-impact low-frequency scenarios are rising concern worldwide. A chain of events result in a major industrial accident with dreadful (and often unpredicted) consequences. Cascading events can be the result of the realization of an external threat, like a terrorist attack a natural disaster or of “domino effect”. During domino events the escalation of a primary accident is driven by the propagation of the primary event to nearby units, causing an overall increment of the accident severity and an increment of the risk associated to an industrial installation. Also natural disasters, like intense flooding, hurricanes, earthquake and lightning are found capable to enhance the risk of an industrial area, triggering loss of containment of hazardous materials and in major accidents. The scientific community usually refers to those accidents as “NaTechs”: natural events triggering industrial accidents. In this document, a state of the art of available approaches to the modelling, assessment, prevention and management of domino and NaTech events is described. On the other hand, the relevant work carried out during past studies still needs to be consolidated and completed, in order to be applicable in a real industrial framework. New methodologies, developed during my research activity, aimed at the quantitative assessment of domino and NaTech accidents are presented. The tools and methods provided within this very study had the aim to assist the progress toward a consolidated and universal methodology for the assessment and prevention of cascading events, contributing to enhance safety and sustainability of the chemical and process industry.