4 resultados para Quantiles
em AMS Tesi di Dottorato - Alm@DL - Università di Bologna
Resumo:
The aim of this thesis is to apply multilevel regression model in context of household surveys. Hierarchical structure in this type of data is characterized by many small groups. In last years comparative and multilevel analysis in the field of perceived health have grown in size. The purpose of this thesis is to develop a multilevel analysis with three level of hierarchy for Physical Component Summary outcome to: evaluate magnitude of within and between variance at each level (individual, household and municipality); explore which covariates affect on perceived physical health at each level; compare model-based and design-based approach in order to establish informativeness of sampling design; estimate a quantile regression for hierarchical data. The target population are the Italian residents aged 18 years and older. Our study shows a high degree of homogeneity within level 1 units belonging from the same group, with an intraclass correlation of 27% in a level-2 null model. Almost all variance is explained by level 1 covariates. In fact, in our model the explanatory variables having more impact on the outcome are disability, unable to work, age and chronic diseases (18 pathologies). An additional analysis are performed by using novel procedure of analysis :"Linear Quantile Mixed Model", named "Multilevel Linear Quantile Regression", estimate. This give us the possibility to describe more generally the conditional distribution of the response through the estimation of its quantiles, while accounting for the dependence among the observations. This has represented a great advantage of our models with respect to classic multilevel regression. The median regression with random effects reveals to be more efficient than the mean regression in representation of the outcome central tendency. A more detailed analysis of the conditional distribution of the response on other quantiles highlighted a differential effect of some covariate along the distribution.
Resumo:
In this PhD thesis a new firm level conditional risk measure is developed. It is named Joint Value at Risk (JVaR) and is defined as a quantile of a conditional distribution of interest, where the conditioning event is a latent upper tail event. It addresses the problem of how risk changes under extreme volatility scenarios. The properties of JVaR are studied based on a stochastic volatility representation of the underlying process. We prove that JVaR is leverage consistent, i.e. it is an increasing function of the dependence parameter in the stochastic representation. A feasible class of nonparametric M-estimators is introduced by exploiting the elicitability of quantiles and the stochastic ordering theory. Consistency and asymptotic normality of the two stage M-estimator are derived, and a simulation study is reported to illustrate its finite-sample properties. Parametric estimation methods are also discussed. The relation with the VaR is exploited to introduce a volatility contribution measure, and a tail risk measure is also proposed. The analysis of the dynamic JVaR is presented based on asymmetric stochastic volatility models. Empirical results with S&P500 data show that accounting for extreme volatility levels is relevant to better characterize the evolution of risk. The work is complemented by a review of the literature, where we provide an overview on quantile risk measures, elicitable functionals and several stochastic orderings.
Resumo:
In this work, we explore and demonstrate the potential for modeling and classification using quantile-based distributions, which are random variables defined by their quantile function. In the first part we formalize a least squares estimation framework for the class of linear quantile functions, leading to unbiased and asymptotically normal estimators. Among the distributions with a linear quantile function, we focus on the flattened generalized logistic distribution (fgld), which offers a wide range of distributional shapes. A novel naïve-Bayes classifier is proposed that utilizes the fgld estimated via least squares, and through simulations and applications, we demonstrate its competitiveness against state-of-the-art alternatives. In the second part we consider the Bayesian estimation of quantile-based distributions. We introduce a factor model with independent latent variables, which are distributed according to the fgld. Similar to the independent factor analysis model, this approach accommodates flexible factor distributions while using fewer parameters. The model is presented within a Bayesian framework, an MCMC algorithm for its estimation is developed, and its effectiveness is illustrated with data coming from the European Social Survey. The third part focuses on depth functions, which extend the concept of quantiles to multivariate data by imposing a center-outward ordering in the multivariate space. We investigate the recently introduced integrated rank-weighted (IRW) depth function, which is based on the distribution of random spherical projections of the multivariate data. This depth function proves to be computationally efficient and to increase its flexibility we propose different methods to explicitly model the projected univariate distributions. Its usefulness is shown in classification tasks: the maximum depth classifier based on the IRW depth is proven to be asymptotically optimal under certain conditions, and classifiers based on the IRW depth are shown to perform well in simulated and real data experiments.
Resumo:
The present Dissertation shows how recent statistical analysis tools and open datasets can be exploited to improve modelling accuracy in two distinct yet interconnected domains of flood hazard (FH) assessment. In the first Part, unsupervised artificial neural networks are employed as regional models for sub-daily rainfall extremes. The models aim to learn a robust relation to estimate locally the parameters of Gumbel distributions of extreme rainfall depths for any sub-daily duration (1-24h). The predictions depend on twenty morphoclimatic descriptors. A large study area in north-central Italy is adopted, where 2238 annual maximum series are available. Validation is performed over an independent set of 100 gauges. Our results show that multivariate ANNs may remarkably improve the estimation of percentiles relative to the benchmark approach from the literature, where Gumbel parameters depend on mean annual precipitation. Finally, we show that the very nature of the proposed ANN models makes them suitable for interpolating predicted sub-daily rainfall quantiles across space and time-aggregation intervals. In the second Part, decision trees are used to combine a selected blend of input geomorphic descriptors for predicting FH. Relative to existing DEM-based approaches, this method is innovative, as it relies on the combination of three characteristics: (1) simple multivariate models, (2) a set of exclusively DEM-based descriptors as input, and (3) an existing FH map as reference information. First, the methods are applied to northern Italy, represented with the MERIT DEM (∼90m resolution), and second, to the whole of Italy, represented with the EU-DEM (25m resolution). The results show that multivariate approaches may (a) significantly enhance flood-prone areas delineation relative to a selected univariate one, (b) provide accurate predictions of expected inundation depths, (c) produce encouraging results in extrapolation, (d) complete the information of imperfect reference maps, and (e) conveniently convert binary maps into continuous representation of FH.