5 resultados para Quality function deployment
em AMS Tesi di Dottorato - Alm@DL - Università di Bologna
Resumo:
The present dissertation relates to methodologies and technics about industrial and mechanical design. The author intends to give a complete idea about the world of design, showing the theories of Quality Function Deployment and TRIZ, of other methods just like planning, budgeting, Value Analysis and Engineering, Concurrent Engineering, Design for Assembly and Manufactoring, etc., and their applications to five concrete cases. In these cases there are also illustrated design technics as CAD, CAS, CAM; Rendering, which are ways to transform an idea into reality. The most important object of the work is, however, the birth of a new methodology, coming up from a comparison between QFD and TRIZ and their integration through other methodologies, just like Time and Cost Analysis, learned and skilled during an important experience in a very famous Italian automotive factory.
Resumo:
The research performed during the PhD candidature was intended to evaluate the quality of white wines, as a function of the reduction in SO2 use during the first steps of the winemaking process. In order to investigate the mechanism and intensity of interactions occurring between lysozyme and the principal macro-components of musts and wines, a series of experiments on model wine solutions were undertaken, focusing attention on the polyphenols, SO2, oenological tannins, pectines, ethanol, and sugar components. In the second part of this research program, a series of conventional sulphite added vinifications were compared to vinifications in which sulphur dioxide was replaced by lysozyme and consequently define potential winemaking protocols suitable for the production of SO2-free wines. To reach the final goal, the technological performance of two selected yeast strains with a low aptitude to produce SO2 during fermentation were also evaluated. The data obtained suggested that the addition of lysozyme and oenological tannins during the alcoholic fermentation could represent a promising alternative to the use of sulphur dioxide and a reliable starting point for the production of SO2-free wines. The different vinification protocols studied influenced the composition of the volatile profile in wines at the end of the alcoholic fermentation, especially with regards to alcohols and ethyl esters also a consequence of the yeast’s response to the presence or absence of sulphites during fermentation, contributing in different ways to the sensory profiles of wines. In fact, the aminoacids analysis showed that lysozyme can affect the consumption of nitrogen as a function of the yeast strain used in fermentation. During the bottle storage, the evolution of volatile compounds is affected by the presence of SO2 and oenological tannins, confirming their positive role in scaveging oxygen and maintaining the amounts of esters over certain levels, avoiding a decline in the wine’s quality. Even though a natural decrease was found on phenolic profiles due to oxidation effects caused by the presence of oxygen dissolved in the medium during the storage period, the presence of SO2 together with tannins contrasted the decay of phenolic content at the end of the fermentation. Tannins also showed a central role in preserving the polyphenolic profile of wines during the storage period, confirming their antioxidant property, acting as reductants. Our study focused on the fundamental chemistry relevant to the oxidative phenolic spoilage of white wines has demonstrated the suitability of glutathione to inhibit the production of yellow xanthylium cation pigments generated from flavanols and glyoxylic acid at the concentration that it typically exists in wine. The ability of glutathione to bind glyoxylic acid rather than acetaldehyde may enable glutathione to be used as a ‘switch’ for glyoxylic acid-induced polymerisation mechanisms, as opposed to the equivalent acetaldehyde polymerisation, in processes such as microoxidation. Further research is required to assess the ability of glutathione to prevent xanthylium cation production during the in-situ production of glyoxylic acid and in the presence of sulphur dioxide.
Resumo:
The quality of fish products is indispensably linked to the freshness of the raw material modulated by appropriate manipulation and storage conditions, specially the storage temperature after catch. The purpose of the research presented in this thesis, which was largely conducted in the context of a research project funded by Italian Ministry of Agricultural, Food and Forestry Policies (MIPAAF), concerned the evaluation of the freshness of farmed and wild fish species, in relation to different storage conditions, under ice (0°C) or at refrigeration temperature (4°C). Several specimens of different species, bogue (Boops boops), red mullet (Mullus barbatus), sea bream (Sparus aurata) and sea bass (Dicentrarchus labrax), during storage, under the different temperature conditions adopted, have been examined. The assessed control parameters were physical (texture, through the use of a dynamometer; visual quality using a computer vision system (CVS)), chemical (through footprint metabolomics 1H-NMR) and sensory (Quality Index Method (QIM). Microbiological determinations were also carried out on the species of hake (Merluccius merluccius). In general obtained results confirmed that the temperature of manipulation/conservation is a key factor in maintaining fish freshness. NMR spectroscopy showed to be able to quantify and evaluate the kinetics for unselected compounds during fish degradation, even a posteriori. This can be suitable for the development of new parameters related to quality and freshness. The development of physical methods, particularly the image analysis performed by computer vision system (CVS), for the evaluation of fish degradation, is very promising. Among CVS parameters, skin colour, presence and distribution of gill mucus, and eye shape modification evidenced a high sensibility for the estimation of fish quality loss, as a function of the adopted storage conditions. Particularly the eye concavity index detected on fish eye showed a high positive correlation with total QIM score.
Resumo:
Soil is a critically important component of the earth’s biosphere. Developing agricultural production systems able to conserve soil quality is essential to guarantee the current and future capacity of soil to provide goods and services. This study investigates the potential of microbial and biochemical parameters to be used as early and sensitive soil quality indicators. Their ability to differentiate plots under contrasting fertilization regimes is evaluated based also on their sensitivity to seasonal fluctuations of environmental conditions and on their relationship with soil chemical parameters. Further, the study addresses some of the critical methodological aspects of microplate-based fluorimetric enzyme assays, in order to optimize assay conditions and evaluate their suitability to be used as a toll to asses soil quality. The study was based on a long-term field experiment established in 1966 in the Po valley (Italy). The soil was cropped with maize (Z. mays L.) and winter wheat (T. aestivum L.) and received no organic fertilization, crop residue or manure, in combination with increasing levels of mineral N fertilizer. The soil microbiota responded to manure amendment increasing it biomass and activity and changing its community composition. Crop residue effect was much more limited. Mineral N fertilization stimulated crop residue mineralization, shifted microbial community composition and influenced N and P cycling enzyme activities. Seasonal fluctuations of environmental factors affected the soil microbiota. However microbial and biochemical parameters seasonality did not hamper the identification of fertilization-induced effects. Soil microbial community abundance, function and composition appeared to be strongly related to soil organic matter content and composition, confirming the close link existing between these soil quality indicators. Microplate-based fluorimetric enzyme assays showed potential to be used as fast and throughput toll to asses soil quality, but required proper optimization of the assay conditions for a precise estimation of enzymes maximum potential activity.
Resumo:
Starch is the main form in which plants store carbohydrates reserves, both in terms of amounts and distribution among different plant species. Carbohydrates are direct products of photosynthetic activity, and it is well know that yield efficiency and production are directly correlated to the amount of carbohydrates synthesized and how these are distributed among vegetative and reproductive organs. Nowadays, in pear trees, due to the modernization of orchards, through the introduction of new rootstocks and the development of new training systems, the understanding and the development of new approaches regarding the distribution and storage of carbohydrates, are required. The objective of this research work was to study the behavior of carbohydrate reserves, mainly starch, in different pear tree organs and tissues: i.e., fruits, leaves, woody organs, roots and flower buds, at different physiological stages during the season. Starch in fruit is accumulated at early stages, and reached a maximum concentration during the middle phase of fruit development; after that, its degradation begins with a rise in soluble carbohydrates. Moreover, relationships between fruit starch degradation and different fruit traits, soluble sugars and organic acids were established. In woody organs and roots, an interconversion between starch and soluble carbohydrates was observed during the dormancy period that confirms its main function in supporting the growth and development of new tissues during the following spring. Factors as training systems, rootstocks, types of bearing wood, and their position on the canopy, influenced the concentrations of starch and soluble carbohydrates at different sampling dates. Also, environmental conditions and cultural practices must be considered to better explain these results. Thus, a deeper understanding of the dynamics of carbohydrates reserves within the plant could provide relevant information to improve several management practices to increase crop yield efficiency.