4 resultados para Pulsed reactors.

em AMS Tesi di Dottorato - Alm@DL - Università di Bologna


Relevância:

20.00% 20.00%

Publicador:

Resumo:

Chlorinated Aliphatic Hydrocarbons (CAHs) are widespread wastewater and groundwater contaminants and represent a real danger for human health and environment. This research is related to the biodegradation technologies to treat chlorinated hydrocarbons. In particular the study of this thesis is focused on chloroform cometabolism by a butane-grown aerobic pure culture (Rhodococcus aetherovorans BCP1) in continuous-flow biofilm reactors, which are used for in-situ and on-site treatments. The work was divided in two parts: in the first one an experimental study has been conducted in two packed-bed reactors (PBRs) for a period of 370 days; in the second one a fluid dynamics and kinetic model has been developed in order to simulate the experimental data concerning a previous study made in a 2-m continuous-flow sand-filled reactor. The goals of the first study were to obtain preliminary information on the feasibility of chloroform biodegradation by BCP1 under attached-cell conditions and to evaluate the applicability of the pulsed injection of growth substrate and oxygen to biofilm reactors. The pulsed feeding represents a tool to control the clogging and to ensure a long bioreactive zone. The operational conditions implemented in the PBRs allowed the attainment of a 4-fold increase of the ratio of chloroform degraded to substrate consumed, in comparison with the phase of continuous substrate supply. The second study was aimed at identifying guidelines for optimizing the oxygen/substrate supply schedule, developing a reliable model of chloroform cometabolism in porous media. The tested model led to a suitable interpretation of the experimental data as long as the ratio of CF degraded to butane consumed was ≤ 0.27 mgchloroform /mgbutane. A long-term simulation of the best-performing schedule of pulsed oxygen/substrate supply indicated the attainment of a steady state condition characterized by unsatisfactory bioremediation performances, evidencing the need for a further optimization of the pulsed injection technique.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

This thesis focuses on studying molecular structure and internal dynamics by using pulsed jet Fourier transform microwave (PJ-FTMW) spectroscopy combined with theoretical calculations. Several kinds of interesting chemical problems are investigated by analyzing the MW spectra of the corresponding molecular systems. First, the general aspects of rotational spectroscopy are summarized, and then the basic theory on molecular rotation and experimental method are described briefly. ab initio and density function theory (DFT) calculations that used in this thesis to assist the assignment of rotational spectrum are also included. From chapter 3 to chapter 8, several molecular systems concerning different kind of general chemical problems are presented. In chapter 3, the conformation and internal motions of dimethyl sulfate are reported. The internal rotations of the two methyl groups split each rotational transition into several components line, allowing for the determination of accurate values of the V3 barrier height to internal rotation and of the orientation of the methyl groups with respect to the principal axis system. In chapter 4 and 5, the results concerning two kinds of carboxylic acid bi-molecules, formed via two strong hydrogen bonds, are presented. This kind of adduct is interesting also because a double proton transfer can easily take place, connecting either two equivalent or two non-equivalent molecular conformations. Chapter 6 concerns a medium strong hydrogen bonded molecular complex of alcohol with ether. The dimer of ethanol-dimethylether was chosen as the model system for this purpose. Chapter 7 focuses on weak halogen…H hydrogen bond interaction. The nature of O-H…F and C-H…Cl interaction has been discussed through analyzing the rotational spectra of CH3CHClF/H2O. In chapter 8, two molecular complexes concerning the halogen bond interaction are presented.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

This work presents first a study of the national and international laws in the fields of safety, security and safeguards. The international treaties and the recommendations issued by the IAEA as well as the national regulations in force in France, the United States and Italy are analyzed. As a result of this, a comparison among them is presented. Given the interest of the Japan Atomic Energy Agency for the aspects of criminal penalties and monetary, also the Japanese case is analyzed. The main part of this work was held at the JAEA in the field of proliferation resistance (PR) and physical protection (PP) of a GEN IV sodium fast reactor. For this purpose the design of the system is completed and the PR & PP methodology is applied to obtain data usable by designers for the improvement of the system itself. Due to the presence of sensitive data, not all the details can be disclosed. The reactor site of a hypothetical and commercial sodium-cooled fast neutron nuclear reactor system (SFR) is used as the target NES for the application of the methodology. The methodology is applied to all the PR and PP scenarios: diversion, misuse and breakout; theft and sabotage. The methodology is applied to the SFR to check if this system meets the target of PR and PP as described in the GIF goal; secondly, a comparison between the SFR and a LWR is performed to evaluate if and how it would be possible to improve the PR&PP of the SFR. The comparison is implemented according to the example development target: achieving PR&PP similar or superior to domestic and international ALWR. Three main actions were performed: implement the evaluation methodology; characterize the PR&PP for the nuclear energy system; identify recommendations for system designers through the comparison.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

Since the Three Mile Island Unit 2 (TMI-2), accident in 1979 which led to the meltdown of about one half of the reactor core and to limited releases of radioactive materials to the environment, an important international effort has been made on severe accident research. The present work aims to investigate the behaviour of a Small Modular Reactor during severe accident conditions. In order to perform these analyses, a SMR has been studied for the European reference severe accident analysis code ASTEC, developed by IRSN and GRS. In the thesis will be described in detail the IRIS Small Modular Reactor; the reference reactor chosen to develop the ASTEC input deck. The IRIS model was developed in the framework of a research collaboration with the IRSN development team. In the thesis will be described systematically the creation of the ASTEC IRIS input deck: the nodalization scheme adopted, the solution used to simulate the passive safety systems and the strong interaction between the reactor vessel and the containment. The ASTEC SMR model will be tested against the RELAP-GOTHIC coupled code model, with respect to a Design Basis Accident, to evaluate the capability of the ASTEC code on reproducing correctly the behaviour of the nuclear system. Once the model has been validated, a severe accident scenario will be simulated and the obtained results along with the nuclear system response will be analysed.