2 resultados para Psychomotor

em AMS Tesi di Dottorato - Alm@DL - Università di Bologna


Relevância:

10.00% 10.00%

Publicador:

Resumo:

In 2019, the Italian Supreme Court established that hemp, for non-medical use, cannot be commercialized for human use, when the “psychotropic effect” of the product or its “offensiveness” can be demonstrated. The first chapter of this work reports a review of the European and Italian legislation on hemp cultivation, as well as the hemp production chain and commercial activities. The second chapter reports the pharmacological aspects and the psychoactive effects of light cannabis, along with pharmacokinetics of the main Cannabis compounds: Δ9-tetrahydrocannabinol (Δ9-THC), Cannabidiol (CBD) and Cannabinol (CBN). The aim of the experimental study, reported in the third chapter, is to assess Δ9-THC and CBD blood concentrations after smoking “light cannabis”, and its effects on vigilance, cognitive and motor skills. Eighteen young adults consumed three light cannabis cigarettes with a percentage of 0.41% of Δ9-THC and of 12.41% of CBD. Blood samples were collected before the experiment (t0) and after pre-defined time-lapses. Five performance tasks and a subjective scale were employed for measuring cognitive and psychomotor performances the day before the experiment (TT0) and after the third cigarette (TT1). Mean (SD) concentrations (ng/ml) were between 1.0(0.8) in t1 and 0.3(0.3) in t5 for Δ9-THC; and 10.5(10.3) in t1 and 5.7(5.7) in t5 for CBD. No significant differences were observed between TT0 and TT1 for all performed psychomotor performance task. Δ9-THC and CBD concentrations showed a high inter-subject variability, and the average concentrations were lower than those previously reported. Toxicological results showed a decrease of Δ9-THC and CBD after the third light cannabis cigarette, and a Δ9-THC /CBD ratio always < 1 was observed. This value might be useful in discriminating light cannabis versus illegal/medical cannabis consumption. The lack of impairment observed in our participants can be interpreted as a consequence of the very low concentrations in the blood.

Relevância:

10.00% 10.00%

Publicador:

Resumo:

In the brain, mutations in SLC25A12 gene encoding AGC1 cause an ultra-rare genetic disease reported as a developmental and epileptic encephalopathy associated with global cerebral hypomyelination. Symptoms of the disease include diffused hypomyelination, arrested psychomotor development, severe hypotonia, seizures and are common to other neurological and developmental disorders. Amongst the biological components believed to be most affected by AGC1 deficiency are oligodendrocytes, glial cells responsible for myelination. Recent studies (Poeta et al, 2022) have also shown how altered levels of transcription factors and epigenetic modifications greatly affect proliferation and differentiation in oligodendrocyte precursor cells (OPCs). In this study we explore the transcriptomic landscape of Agc1 in two different system models: OPCs silenced for Agc1 and iPSCs from human patients differentiated to neural progenitors. Analyses range from differential expression analysis, alternative splicing, master regulator analysis. ATAC-seq results on OPCs were integrated with results from RNA-Seq to assess the activity of a TF based on the accessibility data from its putative targets, which allows to integrate RNA-Seq data to infer their role as either activators or repressors. All the findings for this model were also integrated with early data from iPSCs RNA-seq results, looking for possible commonalities between the two different system models, among which we find a downregulation in genes encoding for SREBP, a transcription factor regulating fatty acids biosynthesis, a key process for myelination which could explain the hypomyelinated state of patients. We also find that in both systems cells tend to form more neurites, likely losing their ability to differentiate, considering their progenitor state. We also report several alterations in the chromatin state of cells lacking Agc1, which confirms the hypothesis for which Agc1 is not a disease restricted only to metabolic alterations in the cells, but there is a profound shift of the regulatory state of these cells.