10 resultados para Psychoactive substances
em AMS Tesi di Dottorato - Alm@DL - Università di Bologna
Resumo:
Introduction. The term New Psychoactive Substances (NPS) encompasses a broad category of drugs which have become available on the market in recent years and whose illicit use for recreational purposes has recently exploded. The analysis of NPS usually requires mass spectrometry based techniques. The aim of our study was to define the preva-lence of NPS consumption in patients with a history of drug addiction followed by Public Services for Pathological Addictions, with the purpose of highlighting the effective presence of NPS within the area of Bologna and evaluating their association with classical drugs of abuse (DOA). Materials and methods. Sustained by literature, a multi-analyte UHPLC-MS/MS method for the identification of 127 NPS (phenethylamines, arylcyclohexylamines, synthetic opioids, tryptamines, synthetic cannabinoids, synthetic cathinones, designer benzodiazepines) and 15 classic drugs of abuse (DOA) in hair samples was developed and validated according to International Guidelines [112]. Samples pretreatment consisted of washing steps and overnight incubation at 45°C in an acid mixture of methanol and water. After cooling, supernatant were injected into the chromatographic system coupled with a tandem mass spectrometry detector. Results. Successful validation was achieved for almost all of the compounds. The method met all the required technical parameters. LOQ was set from 4 to 80 pg/mg The developed method was applied to 107 cases (85 males and 22 females) of clinical interest. Out of 85 hair samples resulting positive to classical drugs of abuse, NPS were found in twelve (8 male and 4 female). Conclusion. The present methodology represents an easy, low cost, wide-panel method for the de-tection of 127 NPS and 15 DOA in hair samples. Such multi-analyte methods facilitates the study of the prevalence of drugs abused that will enable the competent control authorities to obtain evi-dence-based reports regarding the critical spread of the threat represented by NPS.
Resumo:
Introduction. Synthetic cannabinoid receptor agonists (SCRAs) represent the widest group of New Psychoactive Substances (NPS) and, around 2021-2022, new compounds emerged on the market. The aims of the present research were to identify suitable urinary markers of Cumyl-CB-MEGACLONE, Cumyl-NB-MEGACLONE, Cumyl-NB-MINACA, 5F-EDMB-PICA, EDMB-PINACA and ADB-HEXINACA, to present data on their prevalence and to adapt the methodology from the University of Freiburg to the University of Bologna. Materials and methods. Human phase-I metabolites detected in 46 authentic urine samples were confirmed in vitro with pooled human liver microsomes (pHLM) assays, analyzed by liquid chromatography-quadrupole time-of-flight mass spectrometry (LC-qToF-MS). Prevalence data were obtained from urines collected for abstinence control programs. The method to study SCRAs metabolism in use at the University of Freiburg was adapted to the local facilities, tested in vitro with 5F-EDMB-PICA and applied to the study of ADB-HEXINACA metabolism. Results. Metabolites built by mono, di- and tri-hydroxylation were recommended as specific urinary biomarkers to monitor the consumption of SCRAs bearing a cumyl moiety. Monohydroxylated and defluorinated metabolites were suitable proof of 5F-EDMB-PICA consumption. Products of monohydroxylation and amide or ester hydrolysis, coupled to monohydroxylation or ketone formation, were recognized as specific markers for EDMB-PINACA and ADB-HEXINACA. The LC-qToF-MS method was successfully adapted to the University of Bologna, as tested with 5F-EDMB-PICA in vitro metabolites. Prevalence data showed that 5F-EDMB-PINACA and EDMB-PINACA were more prevalent than ADB-HEXINACA, but for a limited period. Conclusion. Due to undetectability of parent compounds in urines and to shared metabolites among structurally related compounds, the identification of specific urinary biomarkers as unequivocal proofs of SCRAs consumption remains challenging for forensic laboratories. Urinary biomarkers are necessary to monitor SCRAs abuse and prevalence data could help in establishing tailored strategies to prevent their spreading, highlighting the role for legal medicine as a service to public health.
Resumo:
This thesis work aims to develop original analytical methods for the determination of drugs with a potential for abuse, for the analysis of substances used in the pharmacological treatment of drug addiction in biological samples and for the monitoring of potentially toxic compounds added to street drugs. In fact reliable analytical techniques can play an important role in this setting. They can be employed to reveal drug intake, allowing the identification of drug users and to assess drug blood levels, assisting physicians in the management of the treatment. Pharmacological therapy needs to be carefully monitored indeed in order to optimize the dose scheduling according to the specific needs of the patient and to discourage improper use of the medication. In particular, different methods have been developed for the detection of gamma-hydroxybutiric acid (GHB), prescribed for the treatment of alcohol addiction, of glucocorticoids, one of the most abused pharmaceutical class to enhance sport performance and of adulterants, pharmacologically active compounds added to illicit drugs for recreational purposes. All the presented methods are based on capillary electrophoresis (CE) and high performance liquid chromatography (HPLC) coupled to various detectors (diode array detector, mass spectrometer). Biological samples pre-treatment was carried out using different extraction techniques, liquid-liquid extraction (LLE) and solid phase extraction (SPE). Different matrices have been considered: human plasma, dried blood spots, human urine, simulated street drugs. These developed analytical methods are individually described and discussed in this thesis work.
Resumo:
In this thesis we will disclose the results obtained from the diastereoisomeric salt formation (n salt, p salt and p1,n1 salt) between non-racemic trans-chrysanthemic acid (trans-ChA) and pure enantiomers of threo-2-dimethylamino-1-phenyl-1,3-propanediol (DMPP). The occurrence of p1,n1 salt formation can have profound effects on enantiomer separation of scalemic (non-racemic) mixtures. This phenomenon when accompanied by substrate self-association impedes the complete recovery of the major enantiomer through formation of an inescapable racemate cage. A synthetic sequence for the asymmetric synthesis of bicyclo[3.2.0]heptanones and bicyclo[3.2.0]hept-3-en-6-ones through a cycloaddition strategy is reported. The fundamental step is a [2+2]-cycloaddition of an enantiopure amide derived from the reaction between a set of acids and an oxazolidinone as the chiral auxiliary. The inter- and intramolecular cycloaddition of in situ-generated keteniminium salts gives bicycles with a good enantioselection. A key intermediate of Iloprost, a chemically stable and biologically active mimic of prostacyclin PGI2 is synthesized following a ‘green approach’. An example of simple optical resolution of this racemic intermediate involving the diastereoisomeric salt formation is described.
Resumo:
Perfluoroalkylated substances are a group of chemicals that have been largely employed during the last 60 years in several applications, widely spreading and accumulating in the environment due to their extreme resistance to degradation. As a consequence, they have been found also in various types of food as well as in drinking water, proving that they can easily reach humans through the diet. The available information concerning their adverse effects on health has recently increased the interest towards these contaminants and highlighted the importance of investigating all the potential sources of human exposure, among which diet was proved to be the most relevant. This need has been underlined by the European Union through Recommendation 2010/161/EU: in this document, Member States were called to monitor their presence of in food, producing accurate estimations of human exposure. The purpose of the research presented in this thesis, which is the result of a partnership between an Italian and a French laboratory, was to develop reliable tools for the analysis of these pollutants in food, to be used for generating data on potentially contaminated matrices. An efficient method based on liquid chromatography-mass spectrometry for the detection of 16 different perfluorinated compounds in milk has been validated in accordance with current European regulation guidelines (2002/657/EC) and is currently under evaluation for ISO 17025 accreditation. The proposed technique was applied to cow, powder and human breast milk samples from Italy and France to produce a preliminary monitoring on the presence of these contaminants. In accordance with the above mentioned European Recommendation, this project led also to the development of a promising technique for the quantification of some precursors of these substances in fish. This method showed extremely satisfying performances in terms of linearity and limits of detection, and will be useful for future surveys.
Resumo:
The public awareness that chemical substances are present ubiquitously in the environment, can be assumed through the diet and can exhibit various health effects, is very high in Europe and Italy. National and international institutions are called to provide figures on the magnitude, frequency, and duration of the population exposure to chemicals, including both natural or anthropogenic substances, voluntarily added to consumers’ good or accidentally entering the production chains. This thesis focuses broadly on how human population exposure to chemicals can be estimated, with particular attention to the methodological approaches and specific focus on dietary exposure assessment and biomonitoring. From the results obtained in the different studies collected in this thesis, it has been pointed out that when selecting the approach to use for the estimate of the exposure to chemicals, several different aspects must be taken into account: the nature of the chemical substance, the population of interest, clarify if the objective is to assess chronic or acute exposure, and finally, take into account the quality and quantity of data available in order to specify and quantify the uncertainty of the estimate.
Resumo:
This thesis reports an integrated analytical and physicochemical approach for the study of natural substances and new drugs based on mass spectrometry techniques combined with liquid chromatography. In particular, Chapter 1 concerns the study of Berberine a natural substance with pharmacological activity for the treatment of hepatobiliary and intestinal diseases. The first part focused on the relationships between physicochemical properties, pharmacokinetics and metabolism of Berberine and its metabolites. For this purpose a sensitive HPLC-ES-MS/MS method have been developed, validated and used to determine these compounds during their physicochemical properties studies and plasma levels of berberine and its metabolites including berberrubine(M1), demethylenberberine(M3), and jatrorrhizine(M4) in humans. Data show that M1, could have an efficient intestinal absorption by passive diffusion due to a keto-enol tautomerism confirmed by NMR studies and its higher plasma concentration. In the second part of Chapter 1, a comparison between M1 and BBR in vivo biodistribution in rat has been studied. In Chapter 2 a new HPLC-ES-MS/MS method for the simultaneous determination and quantification of glucosinolates, as glucoraphanin, glucoerucin and sinigrin, and isothiocyanates, as sulforaphane and erucin, has developed and validated. This method has been used for the analysis of functional foods enriched with vegetable extracts. Chapter 3 focused on a physicochemical study of the interaction between the bile acid sequestrants used in the treatment of hypercholesterolemia including colesevelam and cholestyramine with obeticolic acid (OCA), potent agonist of nuclear receptor farnesoid X (FXR). In particular, a new experimental model for the determination of equilibrium binding isotherm was developed. Chapter 4 focused on methodological aspects of new hard ionization coupled with liquid chromatography (Direct-EI-UHPLC-MS) not yet commercially available and potentially useful for qualitative analysis and for “transparent” molecules to soft ionization techniques. This method was applied to the analysis of several steroid derivatives.
Resumo:
In 2019, the Italian Supreme Court established that hemp, for non-medical use, cannot be commercialized for human use, when the “psychotropic effect” of the product or its “offensiveness” can be demonstrated. The first chapter of this work reports a review of the European and Italian legislation on hemp cultivation, as well as the hemp production chain and commercial activities. The second chapter reports the pharmacological aspects and the psychoactive effects of light cannabis, along with pharmacokinetics of the main Cannabis compounds: Δ9-tetrahydrocannabinol (Δ9-THC), Cannabidiol (CBD) and Cannabinol (CBN). The aim of the experimental study, reported in the third chapter, is to assess Δ9-THC and CBD blood concentrations after smoking “light cannabis”, and its effects on vigilance, cognitive and motor skills. Eighteen young adults consumed three light cannabis cigarettes with a percentage of 0.41% of Δ9-THC and of 12.41% of CBD. Blood samples were collected before the experiment (t0) and after pre-defined time-lapses. Five performance tasks and a subjective scale were employed for measuring cognitive and psychomotor performances the day before the experiment (TT0) and after the third cigarette (TT1). Mean (SD) concentrations (ng/ml) were between 1.0(0.8) in t1 and 0.3(0.3) in t5 for Δ9-THC; and 10.5(10.3) in t1 and 5.7(5.7) in t5 for CBD. No significant differences were observed between TT0 and TT1 for all performed psychomotor performance task. Δ9-THC and CBD concentrations showed a high inter-subject variability, and the average concentrations were lower than those previously reported. Toxicological results showed a decrease of Δ9-THC and CBD after the third light cannabis cigarette, and a Δ9-THC /CBD ratio always < 1 was observed. This value might be useful in discriminating light cannabis versus illegal/medical cannabis consumption. The lack of impairment observed in our participants can be interpreted as a consequence of the very low concentrations in the blood.
Resumo:
Historical evidence shows that chemical, process, and Oil&Gas facilities where dangerous substances are stored or handled are target of deliberate malicious attacks (security attacks) aiming at interfering with normal operations. Physical attacks and cyber-attacks may generate events with consequences on people, property, and the surrounding environment that are comparable to those of major accidents caused by safety-related causes. The security aspects of these facilities are commonly addressed using Security Vulnerability/Risk Assessment (SVA/SRA) methodologies. Most of these methodologies are semi-quantitative and non-systematic approaches that strongly rely on expert judgment, leading to security assessments that are not reproducible. Moreover, they do not consider the synergies with the safety domain. The present 3-year research is aimed at filling the gap outlined by providing knowledge on security attacks, as well as rigorous and systematic methods supporting existing SVA/SRA studies suitable for the chemical, process, and Oil&Gas industry. The different nature of cyber and physical attacks resulted in the development of different methods for the two domains. The first part of the research was devoted to the development and statistical analysis of security databases that allowed to develop new knowledge and lessons learnt on security threats. Based on the obtained background, a Bow-Tie based procedure and two reverse-HazOp based methodologies were developed as hazard identification approaches for physical and cyber threats respectively. To support the quantitative estimation of the security risk, a quantitative procedure based on the Bayesian Network was developed allowing to calculate the probability of success of physical security attacks. All the developed methods have been applied to case studies addressing chemical, process and Oil&Gas facilities (offshore and onshore) proving the quality of the results that can be achieved in improving site security. Furthermore, the outcomes achieved allow to step forward in developing synergies and promoting integration among safety and security management.