7 resultados para Pseudo-Dionysius, the Areopagite.
em AMS Tesi di Dottorato - Alm@DL - Università di Bologna
Resumo:
The labyrinthum Capella quoted in the title (from a Prudentius of Troyes epistle) represents the allegory of the studium of the liberal arts and the looking for knowledge in the early middle age. This is a capital problem in the early Christianity and, in general, for all the western world, concerning the relationship between faith and science. I studied the evolution of this subject from its birth to Carolingian age, focusing on the most relevant figures, for the western Europe, such Saint Augustine (De doctrina christiana), Martianus Capella (De Nuptiis Philologiae et Mercurii) and Iohannes Scotus Eriugena (Annotationes in Marcianum). Clearly it emerges that there were two opposite ways about this relatioship. According to the first, the human being is capable of get a knowledge about God thanks to its own reason and logical thought processes (by the analysis of the nature as a Speculum Dei); on the other way, only the faith and the grace could give the man the possibility to perceive God, and the Bible is the only book men need to know. From late antiquity to Iohannes Scotus times, a few christian and pagan authors fall into line with first position (the neoplatonic one): Saint Augustine (first part of his life, then he retracted some of his views), Martianus, Calcidius and Macrobius. Other philosophers were not neoplatonic bat believed in the power of the studium: Boethius, Cassiodorus, Isidorus of Seville, Hrabanus Maurus and Lupus of Ferriéres. In order to get an idea of this conception, I finally focused the research on Iohannes Scotus Eriugena's Annotationes in Marcianum. I commented Eriugena's work phrase by phrase trying to catch the sense of his words, the reference, philosophical influences, to trace antecedents and its clouts to later middle age and Chartres school. In this scholastic text Eriugena comments the Capella's work and poses again the question of the studium to his students. Iohannes was a magister in schola Palatina during the time of Carl the Bald, he knew Saint Augustine works, and he knew Boethius, Calcidius, Macrobius, Isidorus and Cassiodorus ones too. He translated Pseudo-Dionysius the Areopagite and Maximus the Confessor. He had a neoplatonic view of Christianity and tried to harmonize the impossibility to know God to man's intellectual capability to get a glimpse of God through the study of the nature. According to this point of view, Eriugena's comment of Martianus Capella was no more a secondary work. It gets more and more importance to understand his research and his mystic, and to understand and really grasp the inner sense of his chief work Periphyseon.
Resumo:
Chalcogenides are chemical compounds with at least one of the following three chemical elements: Sulfur (S), Selenium (Sn), and Tellurium (Te). As opposed to other materials, chalcogenide atomic arrangement can quickly and reversibly inter-change between crystalline, amorphous and liquid phases. Therefore they are also called phase change materials. As a results, chalcogenide thermal, optical, structural, electronic, electrical properties change pronouncedly and significantly with the phase they are in, leading to a host of different applications in different areas. The noticeable optical reflectivity difference between crystalline and amorphous phases has allowed optical storage devices to be made. Their very high thermal conductivity and heat fusion provided remarkable benefits in the frame of thermal energy storage for heating and cooling in residential and commercial buildings. The outstanding resistivity difference between crystalline and amorphous phases led to a significant improvement of solid state storage devices from the power consumption to the re-writability to say nothing of the shrinkability. This work focuses on a better understanding from a simulative stand point of the electronic, vibrational and optical properties for the crystalline phases (hexagonal and faced-centered cubic). The electronic properties are calculated implementing the density functional theory combined with pseudo-potentials, plane waves and the local density approximation. The phonon properties are computed using the density functional perturbation theory. The phonon dispersion and spectrum are calculated using the density functional perturbation theory. As it relates to the optical constants, the real part dielectric function is calculated through the Drude-Lorentz expression. The imaginary part results from the real part through the Kramers-Kronig transformation. The refractive index, the extinctive and absorption coefficients are analytically calculated from the dielectric function. The transmission and reflection coefficients are calculated using the Fresnel equations. All calculated optical constants compare well the experimental ones.
Resumo:
Geometric nonlinearities of flexure hinges introduced by large deflections often complicate the analysis of compliant mechanisms containing such members, and therefore, Pseudo-Rigid-Body Models (PRBMs) have been well proposed and developed by Howell [1994] to analyze the characteristics of slender beams under large deflection. These models, however, fail to approximate the characteristics for the deep beams (short beams) or the other flexure hinges. Lobontiu's work [2001] contributed to the diverse flexure hinge analysis building on the assumptions of small deflection, which also limits the application range of these flexure hinges and cannot analyze the stiffness and stress characteristics of these flexure hinges for large deflection. Therefore, the objective of this thesis is to analyze flexure hinges considering both the effects of large-deflection and shear force, which guides the design of flexure-based compliant mechanisms. The main work conducted in the thesis is outlined as follows. 1. Three popular types of flexure hinges: (circular flexure hinges, elliptical flexure hinges and corner-filleted flexure hinges) are chosen for analysis at first. 2. Commercial software (Comsol) based Finite Element Analysis (FEA) method is then used for correcting the errors produced by the equations proposed by Lobontiu when the chosen flexure hinges suffer from large deformation. 3. Three sets of generic design equations for the three types of flexure hinges are further proposed on the basis of stiffness and stress characteristics from the FEA results. 4. A flexure-based four-bar compliant mechanism is finally studied and modeled using the proposed generic design equations. The load-displacement relationships are verified by a numerical example. The results show that a maximum error about the relationship between moment and rotation deformation is less than 3.4% for a flexure hinge, and it is lower than 5% for the four-bar compliant mechanism compared with the FEA results.
Resumo:
This thesis reports an integrated analytical approach for the study of physicochemical and biological properties of new synthetic bile acid (BA) analogues agonists of FXR and TGR5 receptors. Structure-activity data were compared with those previous obtained using the same experimental protocols on synthetic and natural occurring BA. The new synthetic BA analogues are classified in different groups according also to their potency as a FXR and TGR5 agonists: unconjugated and steroid modified BA and side chain modified BA including taurine or glycine conjugates and pseudo-conjugates (sulphonate and sulphate analogues). In order to investigate the relationship between structure and activity the synthetic analogues where admitted to a physicochemical characterization and to a preliminary screening for their pharmacokinetic and metabolism using a bile fistula rat model. Sensitive and accurate analytical methods have been developed for the quali-quantitative analysis of BA in biological fluids and sample used for physicochemical studies. Combined High Performance Liquid Chromatography Electrospray tandem mass spectrometry with efficient chromatographic separation of all studied BA and their metabolites have been optimized and validated. Analytical strategies for the identification of the BA and their minor metabolites have been developed. Taurine and glycine conjugates were identified in MS/MS by monitoring the specific ion transitions in multiple reaction monitoring (MRM) mode while all other metabolites (sulphate, glucuronic acid, dehydroxylated, decarboxylated or oxo) were monitored in a selected-ion reaction (SIR) mode with a negative ESI interface by the following ions. Accurate and precise data where achieved regarding the main physicochemical properties including solubility, detergency, lipophilicity and albumin binding . These studies have shown that minor structural modification greatly affect the pharmacokinetics and metabolism of the new analogues in respect to the natural BA and on turn their site of action, particularly where their receptor are located in the enterohepatic circulation.
Towards the 3D attenuation imaging of active volcanoes: methods and tests on real and simulated data
Resumo:
The purpose of my PhD thesis has been to face the issue of retrieving a three dimensional attenuation model in volcanic areas. To this purpose, I first elaborated a robust strategy for the analysis of seismic data. This was done by performing several synthetic tests to assess the applicability of spectral ratio method to our purposes. The results of the tests allowed us to conclude that: 1) spectral ratio method gives reliable differential attenuation (dt*) measurements in smooth velocity models; 2) short signal time window has to be chosen to perform spectral analysis; 3) the frequency range over which to compute spectral ratios greatly affects dt* measurements. Furthermore, a refined approach for the application of spectral ratio method has been developed and tested. Through this procedure, the effects caused by heterogeneities of propagation medium on the seismic signals may be removed. The tested data analysis technique was applied to the real active seismic SERAPIS database. It provided a dataset of dt* measurements which was used to obtain a three dimensional attenuation model of the shallowest part of Campi Flegrei caldera. Then, a linearized, iterative, damped attenuation tomography technique has been tested and applied to the selected dataset. The tomography, with a resolution of 0.5 km in the horizontal directions and 0.25 km in the vertical direction, allowed to image important features in the off-shore part of Campi Flegrei caldera. High QP bodies are immersed in a high attenuation body (Qp=30). The latter is well correlated with low Vp and high Vp/Vs values and it is interpreted as a saturated marine and volcanic sediments layer. High Qp anomalies, instead, are interpreted as the effects either of cooled lava bodies or of a CO2 reservoir. A pseudo-circular high Qp anomaly was detected and interpreted as the buried rim of NYT caldera.
Resumo:
Low molecular weight gelators (LMWGs) based on pseudo-peptides are here studied for the preparation of supramolecular materials. These compounds can self-assemble through non-covalent interactions such as hydrogen bonds and π-π stacking, forming fibres and gels. A wide variety of materials can be prepared starting from these building blocks, which can be tuned and functionalised depending on the application. In this work, derivatives of the three aromatic amino acids L-Phenylalanine, L-Tyrosine and L-DOPA (3,4-dihydroxiphenylalanine) were synthesised and tested as gelators for water or organic solvents. First, the optimal gelating conditions were studied for each compound, varying concentration, solvent and trigger. Then the materials were characterised in terms of mechanical properties and morphology. Water remediation from dye pollution was the first focus of this work. Organogels were studied as absorbent of dyes from contaminated water. Hydrogels functionalised with TiO2 nanoparticles and graphene platelets were proposed as efficient materials for the photo-degradation of dyes. An efficient method for the incorporation of graphene inside hydrogels using the gelator itself as dispersant was proposed. In these materials a high storage modulus coexists with good self-healing and biocompatibility. The incorporation of a mineral phase inside the gel matrix was then investigated, leading to the preparation of composite organic/inorganic materials. In a first study, the growth of calcium carbonate crystals was achieved inside the hydrogel, which preserved its structure after crystal formation. Then the self-assembled fibres made of LMWGs were used for the first time instead of the polymeric ones as reinforcement inside calcium phosphate cements (CPCs) for bone regeneration. Gel-to-crystal transitions occurring with time in a metastable gel were also examined. The formation of organic crystals in gels can be achieved in multicomponent systems, in which a second gelator constitutes the independent gel network. Finally, some compounds unable to gelate were tested as underwater adhesives.
Resumo:
My PhD research period was focused on the anatomical, physiological and functional study of the gastrointestinal system on two different animal models. In two different contexts, the purpose of these two lines of research was contribute to understand how a specific genetic mutation or the adoption of a particular dietary supplement can affect gastrointestinal function. Functional gastrointestinal disorders are chronic conditions characterized by symptoms for which no organic cause can be found. Although symptoms are generally mild, a small subset of cases shows severe manifestations. This subset of patients may also have recurrent intestinal sub-occlusive episodes, but in absence of mechanical causes. This condition is referred to as chronic intestinal pseudo-obstruction, a rare, intractable chronic disease. Some mutations have been associated with CIPO. A novel causative RAD21 missense mutation was identified in a large consanguineous family, segregating a recessive form of CIPO. The present thesis was aimed to elucidate the mechanisms leading to neuropathy underlying CIPO via a recently developed conditional KI mouse carrying the RAD21 mutation. The experimental studies are based on the characterization and functional analysis of the conditional KI Rad21A626T mouse model. On the other hand aquaculture is increasing the global supply of foods. The species selected and feeds used affects the nutrients available from aquaculture, with a need to improve feed efficiency, both for economic and environmental reasons, but this will require novel innovative approaches. Nutritional strategies focused on the use of botanicals have attracted interest in animal production. Previous research indicates the positive results of using essential oils (EOs) as natural feed additives for several farmed animals. Therefore, the present study was designed to compare the effects of feed EO supplementation in two different forms (natural and composed of active ingredients obtained by synthesis) on the gastric mucosa in European sea bass.