6 resultados para Prunus mume

em AMS Tesi di Dottorato - Alm@DL - Università di Bologna


Relevância:

20.00% 20.00%

Publicador:

Resumo:

In calcareous soils, which are a large share of agricultural soils worldwide, iron availability is limited. Consequently, the whole plant physiology is affected, because of the key role of iron in redox metabolism, resulting in reduced crop yield and quality. Peach cultivation is economically important in northern Italy, and is easily subjected to iron chlorosis. The management of iron nutrition in peach includes grafting on bicarbonate-tolerant rootstocks; other forms of management may be expensive and environmentally impacting. Four genotypes, used as rootstocks for peach and characterized by different degrees of tolerance to chlorosis, were tested in vitro on optimal and bicarbonate-enriched medium. Their redox status and antioxidant responses were assayed; the production and possible roles of nitric oxide (NO) and related compounds were also studied. The most sensitive genotypes show a stronger reduction of the antioxidant enzymatic activities and an increased oxidative stress. A high production of NO was found to be associated to resistant genotypes, whereas sensitive genotypes reacted to stress by downregulating nitrosoglutathione reductase activity. Therefore, NO is proposed to improve the internal iron availability, or to stimulate iron intake.

Relevância:

10.00% 10.00%

Publicador:

Resumo:

Brown rot caused by Monilinia laxa and Monilinia fructigena is considered one of the most important diseases affecting Prunus species. Although some losses can result from the rotten fruits in the orchard, most of the damage is caused to fruits during the post-harvest phase. Several studies reported that brown rot incidence during fruit development highly varies; it was found that at a period corresponding to the the pit hardening stage, fruit susceptibility drastically decreases, to be quickly restored afterwards. However the molecular basis of this phenomenon is still not well understood. Furthermore, no difference in the rot incidence was found between wound and un-wound fruits, suggesting that resistance associated more to a specifc biochemical response of the fruit, rather than to a higher mechanical resistance. So far, the interaction Monilinia-peach was analyzed through chemical approaches. In this study, a bio-molecular approach was undertaken in order to reveal alteration in gene expression associated to the variation of susceptibility. In this thesis three different methods for gene expression analysis were used to analyze the alterations in gene expression occurring in peach fruits during the pit hardening stage, in a period encompassing the temporary change in Monilinia susceptibility: real time PCR, microarray and cDNA AFLP techniques. In 2005, peach fruits (cv.K2) were weekly harvested during a 19-week long-period, starting from the fourth week after full bloom, until full maturity. At each sampling time, three replicates of 5 fruits each were dipped in the M.laxa conidial suspension or in distilled water, as negative control. The fruits were maintained at room temperature for 3 hours; afterwards, they were peeled with a scalpel; the peel was immediately frozen in liquid nitrogen and transferred to -80 °C until use. The degree of susceptibility of peach fruit to the pathogen was determined on 3 replicates of 20 fruits each, as percentage of infected fruits, after one week at 20 °C. Real time PCR analysis was performed to study the variation in expression of those genes encoding for the enzymes of the phenylpropanoid pathway (phenylalanine ammonia lyase (PAL), chalcone synthase (CHS), cinnamate 4-hydroxylase (C4H), leucoanthocyanidine reductase (LAR), hydroxycinnamoyl CoA quinate hydroxycinnamoyl transferase (HQT) and of the jasmonate pathway, such as lipoxygenase (LOX), both involved in the production of important defense compounds. Alteration in gene expression was monitored on fruit samples of a period encompassing the pit hardening stage and the corresponding temporary resistance to M.laxa infections, weekly, from the 6thto the 12th week after full bloom (AFB) inoculated with M. laxa or mock-inoculated. The data suggest a critical change in the expression level of the phenylpropanoid pathway from the 7th to the 8th week AFB; such change could be directly physiologically associated to the peach growth and it could indirectly determine the decrease of susceptibility of peach fruit to Monilinia rot during the subsequent weeks. To investigate on the transcriptome variation underneath the temporary loss of susceptibility of peach fruits to Monilinia rot, the microarray and the cDNA AFLP techniques were used. The samples harvested on the 8th week AFB (named S, for susceptible ones) and on the 12th week AFB (named R, for resistant ones) were compared, both inoculated or mock-inoculated. The microarray experiments were carried out at the University of Padua (Dept. of Environmental Agronomy and Crop Science), using the μPEACH1.0 microarray together with the suited protocols. The analysis showed that 30 genes (corresponding to the 0.6% of the total sequences (4806) contained in the μPeach1.0 microarray) were found up-regulated and 31 ( 0.6%) down regulated in RH vs. SH fruits. On the other hand, 20 genes (0.4%) were shown to be up-regulated and 13 (0.3%) down-regulated in the RI vs. SI fruit. No genes were found differentially expressed in the mock-inoculated resistant fruits (RH) vs. the inoculated resistant ones (RI). Among the up-regulated genes an ATP sulfurylase, an heat shock protein 70, the major allergen Pru P1, an harpin inducing protein and S-adenosylmethionine decarboxylase were found, conversely among the down-regulated ones, cinnamyl alcohol dehydrogenase, an histidine- containing phosphotransfer protein and the ferritin were found. The microarray experimental results and the data indirectly derived, were tested by Real Time PCR analysis. cDNA AFLP analysis was also performed on the same samples. 339 transcript derived fragments considered significant for Monilinia resistance, were selected, sequenced and classified. Genes potentially involved in cell rescue and defence were well represented (8%); several genes (12.1%) involved in the protein folding, post-transductional modification and genes (9.2%) involved in cellular transport were also found. A further 10.3% of genes were classified as involved in the metabolism of aminoacid, carbohydrate and fatty acid. On the other hand, genes involved in the protein synthesis (5.7%) and in signal transduction and communication (5.7%) were found. Among the most interesting genes found differentially expressed between susceptible and resistant fruits, genes encoding for pathogenesis related (PR) proteins were found. To investigate on the association of Monilinia resistance and PR biological function, the major allergen Pru P1 (GenBank accession AM493970) and its isoform (here named Pru P2), were expressed in heterologous system and in vitro assayed for their anti-microbial activity. The ribonuclease activity of the recombinant Pru P1 and Pru P2 proteins was assayed against peach total RNA. As the other PR10 proteins, they showed a ribonucleolytic activity, that could be important to contrast pathogen penetration. Moreover Pru P1 and Pru P2 recombinant proteins were checked for direct antimicrobial activity. No inhibitory effect of Pru P1 or Pru P2 was detected against the selected fungi.

Relevância:

10.00% 10.00%

Publicador:

Resumo:

Phenolic compounds play a central role in peach fruit colour, flavour and health attributes. Phenolic profiles of several peaches and nectarines and most of the structural genes leading to the anthocyanin synthesis in peach fruit have been studied. Moreover, crosses of red and non-red peaches suggested that a major gene controls skin colour of the extreme phenotypes ‘highlighter’ and ‘full-red’. However, there is no data about either the ‘flavan-3-ols specific genes’ (ANR and LAR) or the regulation of the flavonoid metabolism in this crop. In the present study, we determined the concentration of phenolic compounds in the yellowfleshed nectarine Prunus persica cv. ‘Stark Red Gold’ during fruit growth and ripening. We examined the transcript levels of the main structural genes of the flavonoid pathway. Gene expression of the biosynthetic genes correlated well with the concentration of flavan-3-ols, which was very low at the beginning of fruit development, strongly increased at mid-development and finally decreased again during ripening. In contrast, the only gene transcript which correlated with anthocyanin concentration was PpUFGT, which was high at the beginning and end of fruit growth, remaining low during the other developmental stages. These patterns of gene expression could be explained by the involvement of different transcription factors, which up-regulate anthocyanin biosynthesis (PpMYB10 and PpbHLH3), or repress (PpMYBL2) the transcription of the structural genes. These transcription factors appeared to be involved also in the regulation of the lightinduced anthocyanin accumulation in ‘Stark Red Gold’ nectarines, suggesting that they play a critical role in the regulation of flavonoid biosynthesis in peaches and nectarines in response to both developmental and environmental stimuli. Phenolic profiles and expression patterns of the main flavonoid structural and regulatory genes were also determined for the extreme phenotypes denominated ‘highlighter’ and ‘full-red’ and hypotheses about the control of phenolic compounds content in these fruit are discussed.

Relevância:

10.00% 10.00%

Publicador:

Resumo:

The aim of the present thesis was to better understand the physiological role of the phytohormones jasmonates (JAs) and abscisic acid (ABA) during fruit ripening in prospect of a possible field application of JAs and ABA to improve fruit yield and quality. In particular, the effects of exogenous application of these substances at different fruit developmental stages and under different experimental conditions were evaluated. Some aspects of the water relations upon ABA treatment were also analysed. Three fruit species, peach (Prunus persica L. Batsch), golden (Actinidia chinensis) and green kiwifruit (Actinidia deliciosa), and several of their cvs, were used for the trials. Different experimental models were adopted: fruits in planta, detached fruit, detached branches with fruit, girdled branches and micropropagated plants. The work was structured into four sets of experiments as follows: (i) Pre-harvest methyl jasmonate (MJ) application was performed at S3/S4 transition under field conditions in Redhaven peach; ethylene production, ripening index, fruit quality and shelf-life were assessed showing that MJ-treated fruit were firmer and thus less ripe than controls as confirmed by the Index of Absorbance Difference (IAD), but exhibited a shorter shelf-life due to an increase in ethylene production. Moreover, the time course of the expression of ethylene-, auxin- and other ripening-related genes was determined. Ripening-related ACO1 and ACS1 transcript accumulation was inhibited though transiently by MJ, and gene expression of the ethylene receptor ETR2 and of the ethylene-related transcription factor ERF2 was also altered. The time course of the expression of several auxin-related genes was strongly affected by MJ suggesting an increase in auxin biosynthesis, altered auxin conjugation and release as well as perception and transport; the need for a correct ethylene/auxin balance during ripening was confirmed. (ii) Pre- and post-harvest ABA applications were carried out under field conditions in Flaminia and O’Henry peach and Stark Red Gold nectarine fruit; ethylene production, ripening index, fruit quality and shelf-life were assessed. Results show that pre-harvest ABA applications increase fruit size and skin color intensity. Also post-harvest ABA treatments alter ripening-related parameters; in particular, while ethylene production is impaired in ABA-treated fruit soluble solids concentration (SSC) is enhanced. Following field ABA applications stem water potential was modified since ABA-treated peach trees retain more water. (iii) Pre- and post-harvest ABA and PDJ treatments were carried out in both kiwifruit species under field conditions at different fruit developmental stages and in post-harvest. Ripening index, fruit quality, plant transpiration, photosynthesis and stomatal conductance were assessed. Pre-harvest treatments enhance SSC in the two cvs and flesh color development in golden kiwifruit. Post-harvest applications of either ABA or ABA plus PDJ lead to increased SSC. In addition, ABA reduces gas exchanges in A. deliciosa. (iv) Spray, drench and dipping ABA treatments were performed in micropropagated peach plants and in peach and nectarine detached branches; plant water use and transpiration, biomass production and fruit dehydration were determined. In both plants and branches ABA significantly reduces water use and fruit dehydration. No negative effects on biomass production were detected. The present information, mainly arising from plant growth regulator application in a field environment, where plants have to cope with multiple biotic and abiotic stresses, may implement the perspectives for the use of these substances in the control of fruit ripening.

Relevância:

10.00% 10.00%

Publicador:

Resumo:

Antimicrobial peptides (AMPs) are an important component of the innate immune system of the plants. Plant defensins are a large family of antimicrobial peptides with several interesting features, such as small dimension, high stability and broad spectrum of action. The discovery of new molecules and the study of their mechanism of action allow to consider them attractive for biotechnological applications. In this PhD thesis a defensin from Prunus persica (PpDFN1) and four novel DEFensin Like (DEFL) peptides from Vitis vinifera have been studied. In order to characterize the antimicrobial activity of these molecules, the recombinant mature peptides have been expressed in Escherichia coli and purified to homogeneity by chromatography techniques. PpDFN1 is able to inhibit the growth of B. cinerea, P. expansum and M. laxa with different intensity. The recombinant peptide is capable of membrane permeabilization as demonstrated by SYTOX green fluorescence uptake in treated mycelia. Its interaction with membranes containing sphingolipid species has been shown by artificial lipid monolayers. Furthermore, PpDFN1 displays stronger interaction with monolayers composed by lipids extracted from sensitive fungi with the highest interaction against P. expansum, the most sensitive fungi to PpDFN1 action. DEFL 13, a defensin from grapevine, resulted the strongest antibotrytis peptides. It is electrostatically attracted to the fungal membranes as shown by the antagonist effect of the cations and is able to membrane permeabilization in B. cinerea hyphae. DEFL 13 is internalized in fungal cells and leads to fungal death by activation of some signaling pathways as demonstrated by screening of a mutant collection of B. cinerea