8 resultados para Project 2002-051-B : Right-sizing Airconditioning Systems
em AMS Tesi di Dottorato - Alm@DL - Università di Bologna
Resumo:
This thesis deals with Context Aware Services, Smart Environments, Context Management and solutions for Devices and Service Interoperability. Multi-vendor devices offer an increasing number of services and end-user applications that base their value on the ability to exploit the information originating from the surrounding environment by means of an increasing number of embedded sensors, e.g. GPS, compass, RFID readers, cameras and so on. However, usually such devices are not able to exchange information because of the lack of a shared data storage and common information exchange methods. A large number of standards and domain specific building blocks are available and are heavily used in today's products. However, the use of these solutions based on ready-to-use modules is not without problems. The integration and cooperation of different kinds of modules can be daunting because of growing complexity and dependency. In this scenarios it might be interesting to have an infrastructure that makes the coexistence of multi-vendor devices easy, while enabling low cost development and smooth access to services. This sort of technologies glue should reduce both software and hardware integration costs by removing the trouble of interoperability. The result should also lead to faster and simplified design, development and, deployment of cross-domain applications. This thesis is mainly focused on SW architectures supporting context aware service providers especially on the following subjects: - user preferences service adaptation - context management - content management - information interoperability - multivendor device interoperability - communication and connectivity interoperability Experimental activities were carried out in several domains including Cultural Heritage, indoor and personal smart spaces – all of which are considered significant test-beds in Context Aware Computing. The work evolved within european and national projects: on the europen side, I carried out my research activity within EPOCH, the FP6 Network of Excellence on “Processing Open Cultural Heritage” and within SOFIA, a project of the ARTEMIS JU on embedded systems. I worked in cooperation with several international establishments, including the University of Kent, VTT (the Technical Reserarch Center of Finland) and Eurotech. On the national side I contributed to a one-to-one research contract between ARCES and Telecom Italia. The first part of the thesis is focused on problem statement and related work and addresses interoperability issues and related architecture components. The second part is focused on specific architectures and frameworks: - MobiComp: a context management framework that I used in cultural heritage applications - CAB: a context, preference and profile based application broker which I designed within EPOCH Network of Excellence - M3: "Semantic Web based" information sharing infrastructure for smart spaces designed by Nokia within the European project SOFIA - NoTa: a service and transport independent connectivity framework - OSGi: the well known Java based service support framework The final section is dedicated to the middleware, the tools and, the SW agents developed during my Doctorate time to support context-aware services in smart environments.
Resumo:
The modern stratigraphy of clastic continental margins is the result of the interaction between several geological processes acting on different time scales, among which sea level oscillations, sediment supply fluctuations and local tectonics are the main mechanisms. During the past three years my PhD was focused on understanding the impact of each of these process in the deposition of the central and northern Adriatic sedimentary successions, with the aim of reconstructing and quantifying the Late Quaternary eustatic fluctuations. In the last few decades, several Authors tried to quantify past eustatic fluctuations through the analysis of direct sea level indicators, among which drowned barrier-island deposits or coral reefs, or indirect methods, such as Oxygen isotope ratios (δ18O) or modeling simulations. Sea level curves, obtained from direct sea level indicators, record a composite signal, formed by the contribution of the global eustatic change and regional factors, as tectonic processes or glacial-isostatic rebound effects: the eustatic signal has to be obtained by removing the contribution of these other mechanisms. To obtain the most realistic sea level reconstructions it is important to quantify the tectonic regime of the central Adriatic margin. This result has been achieved integrating a numerical approach with the analysis of high-resolution seismic profiles. In detail, the subsidence trend obtained from the geohistory analysis and the backstripping of the borehole PRAD1.2 (the borehole PRAD1.2 is a 71 m continuous borehole drilled in -185 m of water depth, south of the Mid Adriatic Deep - MAD - during the European Project PROMESS 1, Profile Across Mediterranean Sedimentary Systems, Part 1), has been confirmed by the analysis of lowstand paleoshorelines and by benthic foraminifera associations investigated through the borehole. This work showed an evolution from inner-shelf environment, during Marine Isotopic Stage (MIS) 10, to upper-slope conditions, during MIS 2. Once the tectonic regime of the central Adriatic margin has been constrained, it is possible to investigate the impact of sea level and sediment supply fluctuations on the deposition of the Late Pleistocene-Holocene transgressive deposits. The Adriatic transgressive record (TST - Transgressive Systems Tract) is formed by three correlative sedimentary bodies, deposited in less then 14 kyr since the Last Glacial Maximum (LGM); in particular: along the central Adriatic shelf and in the adjacent slope basin the TST is formed by marine units, while along the northern Adriatic shelf the TST is represented by costal deposits in a backstepping configuration. The central Adriatic margin, characterized by a thick transgressive sedimentary succession, is the ideal site to investigate the impact of late Pleistocene climatic and eustatic fluctuations, among which Meltwater Pulses 1A and 1B and the Younger Dryas cold event. The central Adriatic TST is formed by a tripartite deposit bounded by two regional unconformities. In particular, the middle TST unit includes two prograding wedges, deposited in the interval between the two Meltwater Pulse events, as highlighted by several 14C age estimates, and likely recorded the Younger Dryas cold interval. Modeling simulations, obtained with the two coupled models HydroTrend 3.0 and 2D-Sedflux 1.0C (developed by the Community Surface Dynamics Modeling System - CSDMS), integrated by the analysis of high resolution seismic profiles and core samples, indicate that: 1 - the prograding middle TST unit, deposited during the Younger Dryas, was formed as a consequence of an increase in sediment flux, likely connected to a decline in vegetation cover in the catchment area due to the establishment of sub glacial arid conditions; 2 - the two-stage prograding geometry was the consequence of a sea level still-stand (or possibly a fall) during the Younger Dryas event. The northern Adriatic margin, characterized by a broad and gentle shelf (350 km wide with a low angle plunge of 0.02° to the SE), is the ideal site to quantify the timing of each steps of the post LGM sea level rise. The modern shelf is characterized by sandy deposits of barrier-island systems in a backstepping configuration, showing younger ages at progressively shallower depths, which recorded the step-wise nature of the last sea level rise. The age-depth model, obtained by dated samples of basal peat layers, is in good agreement with previous published sea level curves, and highlights the post-glacial eustatic trend. The interval corresponding to the Younger Dyas cold reversal, instead, is more complex: two coeval coastal deposits characterize the northern Adriatic shelf at very different water depths. Several explanations and different models can be attempted to explain this conundrum, but the problem remains still unsolved.
Resumo:
Molecular radiotherapy (MRT) is a fast developing and promising treatment for metastasised neuroendocrine tumours. Efficacy of MRT is based on the capability to selectively "deliver" radiation to tumour cells, minimizing administered dose to normal tissues. Outcome of MRT depends on the individual patient characteristics. For that reason, personalized treatment planning is important to improve outcomes of therapy. Dosimetry plays a key role in this setting, as it is the main physical quantity related to radiation effects on cells. Dosimetry in MRT consists in a complex series of procedures ranging from imaging quantification to dose calculation. This doctoral thesis focused on several aspects concerning the clinical implementation of absorbed dose calculations in MRT. Accuracy of SPECT/CT quantification was assessed in order to determine the optimal reconstruction parameters. A model of PVE correction was developed in order to improve the activity quantification in small volume, such us lesions in clinical patterns. Advanced dosimetric methods were compared with the aim of defining the most accurate modality, applicable in clinical routine. Also, for the first time on a large number of clinical cases, the overall uncertainty of tumour dose calculation was assessed. As part of the MRTDosimetry project, protocols for calibration of SPECT/CT systems and implementation of dosimetry were drawn up in order to provide standard guidelines to the clinics offering MRT. To estimate the risk of experiencing radio-toxicity side effects and the chance of inducing damage on neoplastic cells is crucial for patient selection and treatment planning. In this thesis, the NTCP and TCP models were derived based on clinical data as help to clinicians to decide the pharmaceutical dosage in relation to the therapy control and the limitation of damage to healthy tissues. Moreover, a model for tumour response prediction based on Machine Learning analysis was developed.
Resumo:
Il progetto ANTE riguarda i nuovi sistemi di traduzione automatica (TA) e la loro applicazione nel mondo delle imprese. Lo studio prende spunto dai recenti sviluppi legati all’intelligenza artificiale e ai Big Data che negli ultimi anni hanno permesso alla TA di raggiungere livelli qualitativi molto elevati, al punto tale da essere impiegata da grandi multinazionali per raggiungere nuove quote di mercato. La TA può rispondere positivamente anche ai bisogni delle imprese di piccole dimensioni e a basso tenore tecnologico, migliorando la qualità delle comunicazioni multilingue attraverso delle traduzioni in tempi brevi e a costi contenuti. Lo studio si propone quindi di contribuire al rafforzamento della competitività internazionale delle piccole e medie imprese (PMI) emiliano- romagnole, migliorando la loro capacità di comunicazione in una o più lingue straniere attraverso l’introduzione e l’utilizzo efficace e consapevole di soluzioni ICT di ultima generazione e fornire, così, nuove opportunità di internazionalizzazione.
Resumo:
We have modeled various soft-matter systems with molecular dynamics (MD) simulations. The first topic concerns liquid crystal (LC) biaxial nematic (Nb) phases, that can be possibly used in fast displays. We have investigated the phase organization of biaxial Gay-Berne (GB) mesogens, considering the effects of the orientation, strength and position of a molecular dipole. We have observed that for systems with a central dipole, nematic biaxial phases disappear when increasing dipole strength, while for systems characterized by an offset dipole, the Nb phase is stabilized at very low temperatures. In a second project, in view of their increasing importance as nanomaterials in LC phases, we are developing a DNA coarse-grained (CG) model, in which sugar and phosphate groups are represented with Lennard-Jones spheres, while bases with GB ellipsoids. We have obtained shape, position and orientation parameters for each bead, to best reproduce the atomistic structure of a B-DNA helix. Starting from atomistic simulations results, we have completed a first parametrization of the force field terms, accounting for bonded (bonds, angles and dihedrals) and non-bonded interactions (H-bond and stacking). We are currently validating the model, by investigating stability and melting temperature of various sequences. Finally, in a third project, we aim to explain the mechanism of enantiomeric discrimination due to the presence of a chiral helix of poly(gamma-benzyl L-glutamate) (PBLG), in solution of dimethylformamide (DMF), interacting with chiral or pro-chiral molecules (in our case heptyl butyrate, HEP), after tuning properly an atomistic force field (AMBER). We have observed that DMF and HEP molecules solvate uniformly the PBLG helix, but the pro-chiral solute is on average found closer to the helix with respect to the DMF. The solvent presents a faster isotropic diffusion, twice as HEP, also indicating a stronger interaction of the solute with the helix.
Resumo:
Group B Streptococcus (GBS), in its transition from commensal to pathogen, will encounter diverse host environments and thus require coordinately controlling its transcriptional responses to these changes. This work was aimed at better understanding the role of two component signal transduction systems (TCS) in GBS pathophysiology through a systematic screening procedure. We first performed a complete inventory and sensory mechanism classification of all putative GBS TCS by genomic analysis. Five TCS were further investigated by the generation of knock-out strains, and in vitro transcriptome analysis identified genes regulated by these systems, ranging from 0.1-3% of the genome. Interestingly, two sugar phosphotransferase systems appeared differently regulated in the knock-out mutant of TCS-16, suggesting an involvement in monitoring carbon source availability. High throughput analysis of bacterial growth on different carbon sources showed that TCS-16 was necessary for growth of GBS on fructose-6-phosphate. Additional transcriptional analysis provided further evidence for a stimulus-response circuit where extracellular fructose-6-phosphate leads to autoinduction of TCS-16 with concomitant dramatic up-regulation of the adjacent operon encoding a phosphotransferase system. The TCS-16-deficient strain exhibited decreased persistence in a model of vaginal colonization and impaired growth/survival in the presence of vaginal mucoid components. All mutant strains were also characterized in a murine model of systemic infection, and inactivation of TCS-17 (also known as RgfAC) resulted in hypervirulence. Our data suggest a role for the previously unknown TCS-16, here named FspSR, in bacterial fitness and carbon metabolism during host colonization, and also provide experimental evidence for TCS-17/RgfAC involvement in virulence.
Resumo:
The research work reported in this Thesis was held along two main lines of research. The first and main line of research is about the synthesis of heteroaromatic compounds with increasing steric hindrance, with the aim of preparing stable atropisomers. The main tools used for the study of these dynamic systems, as described in the Introduction, are DNMR, coupled with line shape simulation and DFT calculations, aimed to the conformational analysis for the prediction of the geometries and energy barriers to the trasition states. This techniques have been applied to the research projects about: • atropisomers of arylmaleimides; • atropisomers of 4-arylpyrazolo[3,4-b]pyridines; • study of the intramolecular NO2/CO interaction in solution; • study on 2-arylpyridines. Parallel to the main project, in collaboration with other groups, the research line about determination of the absolute configuration was followed. The products, deriving form organocatalytic reactions, in many cases couldn’t be analyzed by means of X-Ray diffraction, making necessary the development of a protocol based on spectroscopic methodologies: NMR, circular dichroism and computational tools (DFT, TD-DFT) have been implemented in this scope. In this Thesis are reported the determination of the absolute configuration of: • substituted 1,2,3,4-tetrahydroquinolines; • compounds from enantioselective Friedel-Crafts alkylation-acetalization cascade of naphthols with α,β-unsaturated cyclic ketones; • substituted 3,4-annulated indoles.