6 resultados para Professional Life Cycle of the Teacher

em AMS Tesi di Dottorato - Alm@DL - Università di Bologna


Relevância:

100.00% 100.00%

Publicador:

Resumo:

Life Cycle Assessment (LCA) is a chain-oriented tool to evaluate the environment performance of products focussing on the entire life cycle of these products: from the extraction of resources, via manufacturing and use, to the final processing of the disposed products. Through all these stages consumption of resources and pollutant releases to air, water, soil are identified and quantified in Life Cycle Inventory (LCI) analysis. Subsequently to the LCI phase follows the Life Cycle Impact Assessment (LCIA) phase; that has the purpose to convert resource consumptions and pollutant releases in environmental impacts. The LCIA aims to model and to evaluate environmental issues, called impact categories. Several reports emphasises the importance of LCA in the field of ENMs. The ENMs offer enormous potential for the development of new products and application. There are however unanswered questions about the impacts of ENMs on human health and the environment. In the last decade the increasing production, use and consumption of nanoproducts, with a consequent release into the environment, has accentuated the obligation to ensure that potential risks are adequately understood to protect both human health and environment. Due to its holistic and comprehensive assessment, LCA is an essential tool evaluate, understand and manage the environmental and health effects of nanotechnology. The evaluation of health and environmental impacts of nanotechnologies, throughout the whole of their life-cycle by using LCA methodology. This is due to the lack of knowledge in relation to risk assessment. In fact, to date, the knowledge on human and environmental exposure to nanomaterials, such ENPs is limited. This bottleneck is reflected into LCA where characterisation models and consequently characterisation factors for ENPs are missed. The PhD project aims to assess limitations and challenges of the freshwater aquatic ecotoxicity potential evaluation in LCIA phase for ENPs and in particular nanoparticles as n-TiO2.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

During the PhD program in chemistry, curriculum in environmental chemistry, at the University of Bologna the sustainability of industry was investigated through the application of the LCA methodology. The efforts were focused on the chemical sector in order to investigate reactions dealing with the Green Chemistry and Green Engineering principles, evaluating their sustainability in comparison with traditional pathways by a life cycle perspective. The environmental benefits associated with a reduction in the synthesis steps and the use of renewable feedstock were assessed through a holistic approach selecting two case studies with high relevance from an industrial point of view: the synthesis of acrylonitrile and the production of acrolein. The current approach wants to represent a standardized application of LCA methodology to the chemical sector, which could be extended to several case studies, and also an improvement of the current databases, since the lack of data to fill the inventories of the chemical productions represent a huge limitation, difficult to overcome and that can affects negatively the results of the studies. Results emerged from the analyses confirms that the sustainability in the chemical sector should be evaluated from a cradle-to-gate approach, considering all the stages and flows involved in each pathways in order to avoid shifting the environmental burdens from a steps to another. Moreover, if possible, LCA should be supported by other tools able to investigate the other two dimensions of sustainability represented by the social and economic issues.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

The present dissertation focuses on burnout and work engagement among teachers, with especial focus on the Job-Demands Resources Model: Chapter 1 focuses on teacher burnout. It aims to investigate the role of efficacy beliefs using negatively worded inefficacy items instead of positive ones and to establish whether depersonalization and cynism can be considered two different dimensions of the teacher burnout syndrome. Chapter 2 investigates the factorial validity of the instruments used to measure work engagement (i.e. Utrecht Work Engagement Scale, UWES-17 and UWES-9). Moreover, because the current study is partly longitudinal in nature, also the stability across time of engagement can be investigated. Finally, based on cluster-analyses, two groups that differ in levels of engagement are compared as far as their job- and personal resources (i.e. possibilities for personal development, work-life balance, and self-efficacy), positive organizational attitudes and behaviours (i.e., job satisfaction and organizational citizenship behaviour) and perceived health are concerned. Chapter 3 tests the JD-R model in a longitudinal way, by integrating also the role of personal resources (i.e. self-efficacy). This chapter seeks answers to questions on what are the most important job demands, job and personal resources contributing to discriminate burned-out teachers from non-burned-out teachers, as well as engaged teachers from non-engaged teachers. Chapter 4 uses a diary study to extend knowledge about the dynamic nature of the JD-R model by considering between- and within-person variations with regard to both motivational and health impairment processes.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

Asset Management (AM) is a set of procedures operable at the strategic-tacticaloperational level, for the management of the physical asset’s performance, associated risks and costs within its whole life-cycle. AM combines the engineering, managerial and informatics points of view. In addition to internal drivers, AM is driven by the demands of customers (social pull) and regulators (environmental mandates and economic considerations). AM can follow either a top-down or a bottom-up approach. Considering rehabilitation planning at the bottom-up level, the main issue would be to rehabilitate the right pipe at the right time with the right technique. Finding the right pipe may be possible and practicable, but determining the timeliness of the rehabilitation and the choice of the techniques adopted to rehabilitate is a bit abstruse. It is a truism that rehabilitating an asset too early is unwise, just as doing it late may have entailed extra expenses en route, in addition to the cost of the exercise of rehabilitation per se. One is confronted with a typical ‘Hamlet-isque dilemma’ – ‘to repair or not to repair’; or put in another way, ‘to replace or not to replace’. The decision in this case is governed by three factors, not necessarily interrelated – quality of customer service, costs and budget in the life cycle of the asset in question. The goal of replacement planning is to find the juncture in the asset’s life cycle where the cost of replacement is balanced by the rising maintenance costs and the declining level of service. System maintenance aims at improving performance and maintaining the asset in good working condition for as long as possible. Effective planning is used to target maintenance activities to meet these goals and minimize costly exigencies. The main objective of this dissertation is to develop a process-model for asset replacement planning. The aim of the model is to determine the optimal pipe replacement year by comparing, temporally, the annual operating and maintenance costs of the existing asset and the annuity of the investment in a new equivalent pipe, at the best market price. It is proposed that risk cost provide an appropriate framework to decide the balance between investment for replacing or operational expenditures for maintaining an asset. The model describes a practical approach to estimate when an asset should be replaced. A comprehensive list of criteria to be considered is outlined, the main criteria being a visà- vis between maintenance and replacement expenditures. The costs to maintain the assets should be described by a cost function related to the asset type, the risks to the safety of people and property owing to declining condition of asset, and the predicted frequency of failures. The cost functions reflect the condition of the existing asset at the time the decision to maintain or replace is taken: age, level of deterioration, risk of failure. The process model is applied in the wastewater network of Oslo, the capital city of Norway, and uses available real-world information to forecast life-cycle costs of maintenance and rehabilitation strategies and support infrastructure management decisions. The case study provides an insight into the various definitions of ‘asset lifetime’ – service life, economic life and physical life. The results recommend that one common value for lifetime should not be applied to the all the pipelines in the stock for investment planning in the long-term period; rather it would be wiser to define different values for different cohorts of pipelines to reduce the uncertainties associated with generalisations for simplification. It is envisaged that more criteria the municipality is able to include, to estimate maintenance costs for the existing assets, the more precise will the estimation of the expected service life be. The ability to include social costs enables to compute the asset life, not only based on its physical characterisation, but also on the sensitivity of network areas to social impact of failures. The type of economic analysis is very sensitive to model parameters that are difficult to determine accurately. The main value of this approach is the effort to demonstrate that it is possible to include, in decision-making, factors as the cost of the risk associated with a decline in level of performance, the level of this deterioration and the asset’s depreciation rate, without looking at age as the sole criterion for making decisions regarding replacements.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

The advent of distributed and heterogeneous systems has laid the foundation for the birth of new architectural paradigms, in which many separated and autonomous entities collaborate and interact to the aim of achieving complex strategic goals, impossible to be accomplished on their own. A non exhaustive list of systems targeted by such paradigms includes Business Process Management, Clinical Guidelines and Careflow Protocols, Service-Oriented and Multi-Agent Systems. It is largely recognized that engineering these systems requires novel modeling techniques. In particular, many authors are claiming that an open, declarative perspective is needed to complement the closed, procedural nature of the state of the art specification languages. For example, the ConDec language has been recently proposed to target the declarative and open specification of Business Processes, overcoming the over-specification and over-constraining issues of classical procedural approaches. On the one hand, the success of such novel modeling languages strongly depends on their usability by non-IT savvy: they must provide an appealing, intuitive graphical front-end. On the other hand, they must be prone to verification, in order to guarantee the trustworthiness and reliability of the developed model, as well as to ensure that the actual executions of the system effectively comply with it. In this dissertation, we claim that Computational Logic is a suitable framework for dealing with the specification, verification, execution, monitoring and analysis of these systems. We propose to adopt an extended version of the ConDec language for specifying interaction models with a declarative, open flavor. We show how all the (extended) ConDec constructs can be automatically translated to the CLIMB Computational Logic-based language, and illustrate how its corresponding reasoning techniques can be successfully exploited to provide support and verification capabilities along the whole life cycle of the targeted systems.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

Modern food systems are characterized by a high energy intensity as well as by the production of large amounts of waste, residuals and food losses. This inefficiency presents major consequences, in terms of GHG emissions, waste disposal, and natural resource depletion. The research hypothesis is that residual biomass material could contribute to the energetic needs of food systems, if recovered as an integrated renewable energy source (RES), leading to a sensitive reduction of the impacts of food systems, primarily in terms of fossil fuel consumption and GHG emissions. In order to assess these effects, a comparative life cycle assessment (LCA) has been conducted to compare two different food systems: a fossil fuel-based system and an integrated system with the use of residual as RES for self-consumption. The food product under analysis has been the peach nectar, from cultivation to end-of-life. The aim of this LCA is twofold. On one hand, it allows an evaluation of the energy inefficiencies related to agro-food waste. On the other hand, it illustrates how the integration of bioenergy into food systems could effectively contribute to reduce this inefficiency. Data about inputs and waste generated has been collected mainly through literature review and databases. Energy balance, GHG emissions (Global Warming Potential) and waste generation have been analyzed in order to identify the relative requirements and contribution of the different segments. An evaluation of the energy “loss” through the different categories of waste allowed to provide details about the consequences associated with its management and/or disposal. Results should provide an insight of the impacts associated with inefficiencies within food systems. The comparison provides a measure of the potential reuse of wasted biomass and the amount of energy recoverable, that could represent a first step for the formulation of specific policies on the integration of bioenergies for self-consumption.