8 resultados para Productivity and oil of yield

em AMS Tesi di Dottorato - Alm@DL - Università di Bologna


Relevância:

100.00% 100.00%

Publicador:

Resumo:

The PhD project was focused on the study of the poultry welfare conditions and improvements. The project work was divided into 3 main research activities. A) Field evaluation of chicken meat rearing conditions kept in intensive farms. Considering the lack of published reports concerning the overall Italian rearing conditions of broiler chickens, a survey was carried out to assess the welfare conditions of broiler reared in the most important poultry companies in Italy to verify if they are in accordance with the advices given in the European proposal COM (2005) 221 final. Chicken farm conditions, carcass lesions and meat quality were investigated. 1. The densities currently used in Italy are in accordance with the European proposal COM 221 final (2005) which suggests to keep broilers at a density lower than 30-32 kg live weight/m2 and to not exceed 38-40 kg live weight/m2. 2. The mortality rates in summer and winter agree with the mortality score calculated following the formula reported in the EU Proposal COM 221 final (2005). 3. The incidence of damaged carcasses was very low and did not seem related to the stocking density. 4. The FPD scores were generally above the maximum limit advised by the EU proposal COM 221 final (2005), although the stocking densities were lower than 30-32 kg live weight per m2. 5. It can be stated that the control of the environmental conditions, particularly litter quality, appears a key issue to control the onset of foot dermatitis. B) Manipulation of several farm parameters, such litter material and depth, stocking density and light regimen to improve the chicken welfare conditions, in winter season. 1. Even though 2 different stocking densities were established in this study, the performances achieved from the chickens were almost identical among groups. 2. The FCR was significantly better in Standard conditions contrarily to birds reared in Welfare conditions with lower stocking density, more litter material and with a light program of 16 hours light and 8 hours dark. 3. In our trial, in Standard groups we observed a higher content of moisture, nitrogen and ammonia released from the litter. Therefore it can be assumed that the environmental characteristics have been positively changed by the improvements of the rearing conditions adopted for Welfare groups. 4. In Welfare groups the exhausted litters of the pens were dryer and broilers showed a lower occurrence of FPD. 5. The prevalence of hock burn lesions, like FPD, is high with poor litter quality conditions. 6. The combined effect of a lower stocking density, a greater amount of litter material and a photoperiod similar to the natural one, have positively influenced the chickens welfare status, as a matter of fact the occurrence of FPD in Welfare groups was the lowest keeping the score under the European threshold of the proposal COM 221 final(2005). C) The purpose of the third research was to study the effect of high or low stocking density of broiler chickens, different types of litter and the adoption of short or long lighting regimen on broiler welfare through the evaluation of their productivity and incidence of foot pad dermatitis during the hot season. 1. The feed efficiency was better for the Low Density than for High Density broilers. 2. The appearance of FPD was not influenced by stocking density. 3. The foot examination revealed that the lesions occurred more in birds maintained on chopped wheat straw than on wood shaving. 4. In conclusion, the adoptions of a short light regimen similar to that occurring in nature during summer reduces the feed intake without modify the growth rate thus improving the feed efficiency. Foot pad lesion were not affected neither by stocking densities nor by light regimens whereas wood shavings exerted a favourable effect in preserving foot pad in good condition. D) A study was carried out to investigate more widely the possible role of 25-hydroxycholecalciferol supplemented in the diet of a laying hen commercial strain (Lohmann brown) in comparison of diets supplemented with D3 or with D3 + 25- hydroxycholecalciferol. Egg traits during a productive cycle as well as the bone characteristics of the layers have been as well evaluated to determine if there the vitamin D3 may enhance the welfare status of the birds. 1. The weight of the egg and of its components is often greater in hens fed a diet enriched with 25-hydroxycholecalciferol. 2. Since eggs of treated groups are heavier and a larger amount of shell is needed, a direct effect on shell strength is observed. 3. At 30 and at 50 wk of age hens fed 25 hydroxycholecalciferol exhibited greater values of bone breaking force. 4. Radiographic density values obtained in the trial are always higher in hens fed with 25-hydroxycholecalciferol of both treatments: supplemented for the whole laying cycle (25D3) or from 40 weeks of age onward (D3+25D3).

Relevância:

100.00% 100.00%

Publicador:

Resumo:

In this dissertation the pyrolytic conversion of biomass into chemicals and fuels was investigated from the analytical point of view. The study was focused on the liquid (bio-oil) and solid (char) fractions obtainable from biomass pyrolysis. The drawbacks of Py-GC-MS described so far were partially solved by coupling different analytical configurations (Py-GC-MS, Py-GC-MIP-AED and off-line Py-SPE and Py-SPME-GC-MS with derivatization procedures). The application of different techniques allowed a satisfactory comparative analysis of pyrolysis products of different biomass and a high throughput screening on effect of 33 catalysts on biomass pyrolysis. As the results of the screening showed, the most interesting catalysts were those containing copper (able to reduce the high molecular weight fraction of bio-oil without large yield decrease) and H-ZSM-5 (able to entirely convert the bio-oil into “gasoline like” aromatic products). In order to establish the noxious compounds content of the liquid product, a clean-up step was included in the Py-SPE procedure. This allowed to investigate pollutants (PAHs) generation from pyrolysis and catalytic pyrolysis of biomass. In fact, bio-oil from non-catalytic pyrolysis of biomass showed a moderate PAHs content, while the use of H-ZSM-5 catalyst for bio-oil up-grading determined an astonishing high production of PAHs (if compared to what observed in alkanes cracking), indicating an important concern in the substitution fossil fuel with bio-oil derived from biomass. Moreover, the analytical procedures developed in this thesis were directly applied for the detailed study of the most useful process scheme and up-grading route to chemical intermediates (anhydrosugars), transportation fuels or commodity chemicals (aromatic hydrocarbons). In the applied study, poplar and microalgae biomass were investigated and overall GHGs balance of pyrolysis of agricultural residues in Ravenna province was performed. A special attention was put on the comparison of the effect of bio-char different use (fuel or as soil conditioner) on the soil health and GHGs emissions.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

Northwestern Adriatic Sea Mediterranean mussels are exposed to fluctuating environmental parameters and to natural and anthropogenic stressors. Today is well known that mussels can be defined as holobiont, even if remains a lot to elucidate about how an organism and its microbial component response to environmental stress. This PhD dissertation aims to investigate microbiome possible adaptive patters exploiting the organism physiology response to stress, using the NGS sequencing method. The experimental approach consisted of two phases to first determine (i) the microbiome at a tissue scale level, (ii) the microbiome and physiological response to natural and anthropogenic stress environment and the chemical assessment of the microecosystem the Northwestern Adriatic Sea Mediterranean Mussel lives in. Results revealed firstly a robust microbiome well differentiated from seawater microecosystem, with compositional variations at the organ level. Thanks to those findings, digestive gland, the organ in which digestive and detoxification processes allow animal to tolerate and accumulate xenobiotics of natural and anthropogenic origin, was the selected tissue for the second phase of the project. The second phase of the project evaluated the putative physiological variations and the compositional changes in microbiome of digestive gland. I then manage to assess microbiome region trends across the north Adriatic, with each sampling site well differentiated from the others. Finally, a chemical method able to a powerful tool for the analytical detection of the major pollutants in mussels were validated. These first results may provide baseline information for future studies approaches of seasonal and region trends of microbiota profiles and physiological responses in terms of metabolism.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

The aim of the first part of this thesis was to evaluate the effect of trans fatty acid- (TFA), contaminant, polycyclic aromatic hydrocarbon (PAH)- and oxidation productenriched diets on the content of TFA and conjugated linoleic acid (CLA) isomers in meat and liver of both poultry and rabbit. The enriched feedings were prepared with preselected fatty co-and by-products that contained low and high levels of TFA (low, palm fatty acid distillate; high, hydrogenated palm fatty acid distillate), environmental contaminants (dioxins and PCBs) (two different fish oils), PAH (olive oil acid oils and pomace olive oil from chemical refining, for low and high levels) and oxidation products (sunflower-olive oil blend before and after frying), so as to obtain single feedings with three enrichment degrees (high, medium and low) of the compound of interest. This experimental set-up is a part of a large, collaborative European project (http://www.ub.edu/feedfat/), where other chemical and health parameters are assessed. Lipids were extracted, methylated with diazomethane, then transmethylated with 2N KOH/methanol and analyzed by GC and silver-ion TLC-GC. TFA and CLA were determined in the fats, the feedings, meat and liver of both poultry and rabbit. In general, the level of TFA and CLA in meat and liver mainly varied according to those originally found in the feeding fats. It must be pointed out, though, that TFA and CLA accumulation was different for the two animal species, as well as for the two types of tissues. The TFA composition of meat and liver changes according to the composition of the oils added to the feeds with some differences between species. Chicken meat with skin shows higher TFA content (2.6–5.4 fold) than rabbit meat, except for the “PAH” trial. Chicken liver shows higher TFA content (1.2–2.1 fold) than rabbit liver, except for the “TRANS” and “PAH” trials. In both chicken and rabbit meats, the TFA content was higher for the “TRANS” trial, followed by the “DIOXIN” trial. Slight differences were found on the “OXIDATION” and “PAH” trends in both types of meats. In both chicken and rabbit livers, the TFA content was higher for the “TRANS” trial, followed by those of the “PAH”, “DIOXIN” and “OXIDATION” trials. This trend, however, was not identical to that of feeds, where the TFA content varied as follows: “TRANS” > “DIOXIN” >“PAH” > “OXIDATION”. In chicken and rabbit meat samples, C18:1 TFA were the most abundant, followed by C18:2 TFA and C18:3 TFA, except for the “DIOXIN” trial where C18:3 TFA > C18:2 TFA. In chicken and rabbit liver samples of the “TRANS” and “OXIDATION” trials, C18:1 TFA were the most abundant, followed by C18:2 TFA and C18:3 TFA, whereas C18:3 TFA > C18:2 in the “DIOXIN” trial. Slight differences were found on the “PAH” trend in livers from both species. The second part of the thesis dealt with the study of lipid oxidation in washed turkey muscle added with different antioxidants. The evaluation on the oxidative stability of muscle foods found that oxidation could be measured by headspace solid phase microestraction (SPME) of hexanal and propanal. To make this method effective, an antioxidant system was added to stored muscle to stop the oxidative processes. An increase in ionic strength of the sample was also implemented to increase the concentration of aldehydes in the headspace. This method was found to be more sensitive than the commonly used thiobarbituric acid reactive substances (TBARs) method. However, after antioxidants were added and oxidation was stopped, the concentration of aldehydes decreased. It was found that the decrease in aldehyde concentration was due to the binding of the aldehydes to muscle proteins, thus decreasing the volatility and making them less detectable.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

Abstract. This thesis presents a discussion on a few specific topics regarding the low velocity impact behaviour of laminated composites. These topics were chosen because of their significance as well as the relatively limited attention received so far by the scientific community. The first issue considered is the comparison between the effects induced by a low velocity impact and by a quasi-static indentation experimental test. An analysis of both test conditions is presented, based on the results of experiments carried out on carbon fibre laminates and on numerical computations by a finite element model. It is shown that both quasi-static and dynamic tests led to qualitatively similar failure patterns; three characteristic contact force thresholds, corresponding to the main steps of damage progression, were identified and found to be equal for impact and indentation. On the other hand, an equal energy absorption resulted in a larger delaminated area in quasi-static than in dynamic tests, while the maximum displacement of the impactor (or indentor) was higher in the case of impact, suggesting a probably more severe fibre damage than in indentation. Secondly, the effect of different specimen dimensions and boundary conditions on its impact response was examined. Experimental testing showed that the relationships of delaminated area with two significant impact parameters, the absorbed energy and the maximum contact force, did not depend on the in-plane dimensions and on the support condition of the coupons. The possibility of predicting, by means of a simplified numerical computation, the occurrence of delaminations during a specific impact event is also discussed. A study about the compressive behaviour of impact damaged laminates is also presented. Unlike most of the contributions available about this subject, the results of compression after impact tests on thin laminates are described in which the global specimen buckling was not prevented. Two different quasi-isotropic stacking sequences, as well as two specimen geometries, were considered. It is shown that in the case of rectangular coupons the lay-up can significantly affect the damage induced by impact. Different buckling shapes were observed in laminates with different stacking sequences, in agreement with the results of numerical analysis. In addition, the experiments showed that impact damage can alter the buckling mode of the laminates in certain situations, whereas it did not affect the compressive strength in every case, depending on the buckling shape. Some considerations about the significance of the test method employed are also proposed. Finally, a comprehensive study is presented regarding the influence of pre-existing in-plane loads on the impact response of laminates. Impact events in several conditions, including both tensile and compressive preloads, both uniaxial and biaxial, were analysed by means of numerical finite element simulations; the case of laminates impacted in postbuckling conditions was also considered. The study focused on how the effect of preload varies with the span-to-thickness ratio of the specimen, which was found to be a key parameter. It is shown that a tensile preload has the strongest effect on the peak stresses at low span-to-thickness ratios, leading to a reduction of the minimum impact energy required to initiate damage, whereas this effect tends to disappear as the span-to-thickness ratio increases. On the other hand, a compression preload exhibits the most detrimental effects at medium span-to-thickness ratios, at which the laminate compressive strength and the critical instability load are close to each other, while the influence of preload can be negligible for thin plates or even beneficial for very thick plates. The possibility to obtain a better explanation of the experimental results described in the literature, in view of the present findings, is highlighted. Throughout the thesis the capabilities and limitations of the finite element model, which was implemented in an in-house program, are discussed. The program did not include any damage model of the material. It is shown that, although this kind of analysis can yield accurate results as long as damage has little effect on the overall mechanical properties of a laminate, it can be helpful in explaining some phenomena and also in distinguishing between what can be modelled without taking into account the material degradation and what requires an appropriate simulation of damage. Sommario. Questa tesi presenta una discussione su alcune tematiche specifiche riguardanti il comportamento dei compositi laminati soggetti ad impatto a bassa velocità. Tali tematiche sono state scelte per la loro importanza, oltre che per l’attenzione relativamente limitata ricevuta finora dalla comunità scientifica. La prima delle problematiche considerate è il confronto fra gli effetti prodotti da una prova sperimentale di impatto a bassa velocità e da una prova di indentazione quasi statica. Viene presentata un’analisi di entrambe le condizioni di prova, basata sui risultati di esperimenti condotti su laminati in fibra di carbonio e su calcoli numerici svolti con un modello ad elementi finiti. È mostrato che sia le prove quasi statiche sia quelle dinamiche portano a un danneggiamento con caratteristiche qualitativamente simili; tre valori di soglia caratteristici della forza di contatto, corrispondenti alle fasi principali di progressione del danno, sono stati individuati e stimati uguali per impatto e indentazione. D’altro canto lo stesso assorbimento di energia ha portato ad un’area delaminata maggiore nelle prove statiche rispetto a quelle dinamiche, mentre il massimo spostamento dell’impattatore (o indentatore) è risultato maggiore nel caso dell’impatto, indicando la probabilità di un danneggiamento delle fibre più severo rispetto al caso dell’indentazione. In secondo luogo è stato esaminato l’effetto di diverse dimensioni del provino e diverse condizioni al contorno sulla sua risposta all’impatto. Le prove sperimentali hanno mostrato che le relazioni fra l’area delaminata e due parametri di impatto significativi, l’energia assorbita e la massima forza di contatto, non dipendono dalle dimensioni nel piano dei provini e dalle loro condizioni di supporto. Viene anche discussa la possibilità di prevedere, per mezzo di un calcolo numerico semplificato, il verificarsi di delaminazioni durante un determinato caso di impatto. È presentato anche uno studio sul comportamento a compressione di laminati danneggiati da impatto. Diversamente della maggior parte della letteratura disponibile su questo argomento, vengono qui descritti i risultati di prove di compressione dopo impatto su laminati sottili durante le quali l’instabilità elastica globale dei provini non è stata impedita. Sono state considerate due differenti sequenze di laminazione quasi isotrope, oltre a due geometrie per i provini. Viene mostrato come nel caso di provini rettangolari la sequenza di laminazione possa influenzare sensibilmente il danno prodotto dall’impatto. Due diversi tipi di deformate in condizioni di instabilità sono stati osservati per laminati con diversa laminazione, in accordo con i risultati dell’analisi numerica. Gli esperimenti hanno mostrato inoltre che in certe situazioni il danno da impatto può alterare la deformata che il laminato assume in seguito ad instabilità; d’altra parte tale danno non ha sempre influenzato la resistenza a compressione, a seconda della deformata. Vengono proposte anche alcune considerazioni sulla significatività del metodo di prova utilizzato. Infine viene presentato uno studio esaustivo riguardo all’influenza di carichi membranali preesistenti sulla risposta all’impatto dei laminati. Sono stati analizzati con simulazioni numeriche ad elementi finiti casi di impatto in diverse condizioni di precarico, sia di trazione sia di compressione, sia monoassiali sia biassiali; è stato preso in considerazione anche il caso di laminati impattati in condizioni di postbuckling. Lo studio si è concentrato in particolare sulla dipendenza degli effetti del precarico dal rapporto larghezza-spessore del provino, che si è rivelato un parametro fondamentale. Viene illustrato che un precarico di trazione ha l’effetto più marcato sulle massime tensioni per bassi rapporti larghezza-spessore, portando ad una riduzione della minima energia di impatto necessaria per innescare il danneggiamento, mentre questo effetto tende a scomparire all’aumentare di tale rapporto. Il precarico di compressione evidenzia invece gli effetti più deleteri a rapporti larghezza-spessore intermedi, ai quali la resistenza a compressione del laminato e il suo carico critico di instabilità sono paragonabili, mentre l’influenza del precarico può essere trascurabile per piastre sottili o addirittura benefica per piastre molto spesse. Viene evidenziata la possibilità di trovare una spiegazione più soddisfacente dei risultati sperimentali riportati in letteratura, alla luce del presente contributo. Nel corso della tesi vengono anche discussi le potenzialità ed i limiti del modello ad elementi finiti utilizzato, che è stato implementato in un programma scritto in proprio. Il programma non comprende alcuna modellazione del danneggiamento del materiale. Viene però spiegato come, nonostante questo tipo di analisi possa portare a risultati accurati soltanto finché il danno ha scarsi effetti sulle proprietà meccaniche d’insieme del laminato, esso possa essere utile per spiegare alcuni fenomeni, oltre che per distinguere fra ciò che si può riprodurre senza tenere conto del degrado del materiale e ciò che invece richiede una simulazione adeguata del danneggiamento.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

The hydrogen production in the green microalga Chlamydomonas reinhardtii was evaluated by means of a detailed physiological and biotechnological study. First, a wide screening of the hydrogen productivity was done on 22 strains of C. reinhardtii, most of which mutated at the level of the D1 protein. The screening revealed for the first time that mutations upon the D1 protein may result on an increased hydrogen production. Indeed, productions ranged between 0 and more than 500 mL hydrogen per liter of culture (Torzillo, Scoma et al., 2007a), the highest producer (L159I-N230Y) being up to 5 times more performant than the strain cc124 widely adopted in literature (Torzillo, Scoma, et al., 2007b). Improved productivities by D1 protein mutants were generally a result of high photosynthetic capabilities counteracted by high respiration rates. Optimization of culture conditions were addressed according to the results of the physiological study of selected strains. In a first step, the photobioreactor (PBR) was provided with a multiple-impeller stirring system designed, developed and tested by us, using the strain cc124. It was found that the impeller system was effectively able to induce regular and turbulent mixing, which led to improved photosynthetic yields by means of light/dark cycles. Moreover, improved mixing regime sustained higher respiration rates, compared to what obtained with the commonly used stir bar mixing system. As far as the results of the initial screening phase are considered, both these factors are relevant to the hydrogen production. Indeed, very high energy conversion efficiencies (light to hydrogen) were obtained with the impeller device, prooving that our PBR was a good tool to both improve and study photosynthetic processes (Giannelli, Scoma et al., 2009). In the second part of the optimization, an accurate analysis of all the positive features of the high performance strain L159I-N230Y pointed out, respect to the WT, it has: (1) a larger chlorophyll optical cross-section; (2) a higher electron transfer rate by PSII; (3) a higher respiration rate; (4) a higher efficiency of utilization of the hydrogenase; (5) a higher starch synthesis capability; (6) a higher per cell D1 protein amount; (7) a higher zeaxanthin synthesis capability (Torzillo, Scoma et al., 2009). These information were gathered with those obtained with the impeller mixing device to find out the best culture conditions to optimize productivity with strain L159I-N230Y. The main aim was to sustain as long as possible the direct PSII contribution, which leads to hydrogen production without net CO2 release. Finally, an outstanding maximum rate of 11.1 ± 1.0 mL/L/h was reached and maintained for 21.8 ± 7.7 hours, when the effective photochemical efficiency of PSII (ΔF/F'm) underwent a last drop to zero. If expressed in terms of chl (24.0 ± 2.2 µmoles/mg chl/h), these rates of production are 4 times higher than what reported in literature to date (Scoma et al., 2010a submitted). DCMU addition experiments confirmed the key role played by PSII in sustaining such rates. On the other hand, experiments carried out in similar conditions with the control strain cc124 showed an improved final productivity, but no constant PSII direct contribution. These results showed that, aside from fermentation processes, if proper conditions are supplied to selected strains, hydrogen production can be substantially enhanced by means of biophotolysis. A last study on the physiology of the process was carried out with the mutant IL. Although able to express and very efficiently utilize the hydrogenase enzyme, this strain was unable to produce hydrogen when sulfur deprived. However, in a specific set of experiments this goal was finally reached, pointing out that other than (1) a state 1-2 transition of the photosynthetic apparatus, (2) starch storage and (3) anaerobiosis establishment, a timely transition to the hydrogen production is also needed in sulfur deprivation to induce the process before energy reserves are driven towards other processes necessary for the survival of the cell. This information turned out to be crucial when moving outdoor for the hydrogen production in a tubular horizontal 50-liter PBR under sunlight radiation. First attempts with laboratory grown cultures showed that no hydrogen production under sulfur starvation can be induced if a previous adaptation of the culture is not pursued outdoor. Indeed, in these conditions the hydrogen production under direct sunlight radiation with C. reinhardtii was finally achieved for the first time in literature (Scoma et al., 2010b submitted). Experiments were also made to optimize productivity in outdoor conditions, with respect to the light dilution within the culture layers. Finally, a brief study of the anaerobic metabolism of C. reinhardtii during hydrogen oxidation has been carried out. This study represents a good integration to the understanding of the complex interplay of pathways that operate concomitantly in this microalga.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

Linear and macrocyclic nitrogen ligands have been found wide application during the years. Nitrogen has a much strong association with transition-metal ions because the electron pair is partucularly available for complexing purposes. We started our investigation with the synthesis of new chiral perazamacrocycles containing four pyrrole rings. This ligand was synthesized by the [2+2]condensation of (R,R)-diaminocyclohexane and dipirranedialdehydes and was tested, after a complexation with Cu(OAc)2, in Henry reactions. The best yields (96%) and higher ee’s (96%) were obtained when the meso-substituent on the dipyrrandialdehyde was a methyl group. The positive influence of the pyrrole-containing macrocyclic structure on the efficiency/enantioselectivity of the catalytic system was demonstrated by comparison with the Henry reactions performed using analogous ligands. Henry product was obtain in good yield but only 73% of ee, when the dialdehyde unit was replaced by a triheteroaromatic dialdehye (furan-pyrrol-furan). Another well known macrocyclic ligand is calix[4]pyrrole. We decided to investigate, in collaboration with Neier’s group, the metal-coordinating properties of calix[2]pyrrole[2]pyrrolidine compounds obtained by the reduction of calix[4]pyrrole. We focused our attention on the reduction conditions, and tested different Pd supported (charcoal, grafite) catalysts at different condition. Concerning the synthesis of linear polyamine ligands. We focused our attention to the synthesis of 2-heteroaryl- and 2,5-diheteroarylpyrrolidines. The reductive amination reaction of diarylketones and aryl-substitutedketo-aldehydes with different chiral amines was exploited to prepare a small library of diastereo-enriched substituted pyrrolidines. We have also described a new synthetic route to 1,2-disubstituted 1,2,3,4-tetrahydropyrrole[1,2-a]pyrazines, which involves the diastereoselective addition of Grignard reagents to chiral oxazolidines. The best diastereoselectivity (98:2) was dependent on the nature of both the chiral auxiliary, (S)-1-phenylglycinol, and the nature of the organometallic reagent (MeMgBr).

Relevância:

100.00% 100.00%

Publicador:

Resumo:

This study is focused on radio-frequency inductively coupled thermal plasma (ICP) synthesis of nanoparticles, combining experimental and modelling approaches towards process optimization and industrial scale-up, in the framework of the FP7-NMP SIMBA European project (Scaling-up of ICP technology for continuous production of Metallic nanopowders for Battery Applications). First the state of the art of nanoparticle production through conventional and plasma routes is summarized, then results for the characterization of the plasma source and on the investigation of the nanoparticle synthesis phenomenon, aiming at highlighting fundamental process parameters while adopting a design oriented modelling approach, are presented. In particular, an energy balance of the torch and of the reaction chamber, employing a calorimetric method, is presented, while results for three- and two-dimensional modelling of an ICP system are compared with calorimetric and enthalpy probe measurements to validate the temperature field predicted by the model and used to characterize the ICP system under powder-free conditions. Moreover, results from the modeling of critical phases of ICP synthesis process, such as precursor evaporation, vapour conversion in nanoparticles and nanoparticle growth, are presented, with the aim of providing useful insights both for the design and optimization of the process and on the underlying physical phenomena. Indeed, precursor evaporation, one of the phases holding the highest impact on industrial feasibility of the process, is discussed; by employing models to describe particle trajectories and thermal histories, adapted from the ones originally developed for other plasma technologies or applications, such as DC non-transferred arc torches and powder spherodization, the evaporation of micro-sized Si solid precursor in a laboratory scale ICP system is investigated. Finally, a discussion on the role of thermo-fluid dynamic fields on nano-particle formation is presented, as well as a study on the effect of the reaction chamber geometry on produced nanoparticle characteristics and process yield.